BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 34799652)

  • 1. Experimental strategies to achieve efficient targeted knock-in via tandem paired nicking.
    Rahman ML; Hyodo T; Karnan S; Ota A; Hasan MN; Mihara Y; Wahiduzzaman M; Tsuzuki S; Hosokawa Y; Konishi H
    Sci Rep; 2021 Nov; 11(1):22627. PubMed ID: 34799652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tandem Paired Nicking Promotes Precise Genome Editing with Scarce Interference by p53.
    Hyodo T; Rahman ML; Karnan S; Ito T; Toyoda A; Ota A; Wahiduzzaman M; Tsuzuki S; Okada Y; Hosokawa Y; Konishi H
    Cell Rep; 2020 Jan; 30(4):1195-1207.e7. PubMed ID: 31995758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In trans paired nicking triggers seamless genome editing without double-stranded DNA cutting.
    Chen X; Janssen JM; Liu J; Maggio I; 't Jong AEJ; Mikkers HMM; Gonçalves MAFV
    Nat Commun; 2017 Sep; 8(1):657. PubMed ID: 28939824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Creation of zebrafish knock-in reporter lines in the nefma gene by Cas9-mediated homologous recombination.
    Eschstruth A; Schneider-Maunoury S; Giudicelli F
    Genesis; 2020 Jan; 58(1):e23340. PubMed ID: 31571409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precise homology-directed installation of large genomic edits in human cells with cleaving and nicking high-specificity Cas9 variants.
    Wang Q; Liu J; Janssen JM; Gonçalves MAFV
    Nucleic Acids Res; 2023 Apr; 51(7):3465-3484. PubMed ID: 36928106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair.
    He X; Tan C; Wang F; Wang Y; Zhou R; Cui D; You W; Zhao H; Ren J; Feng B
    Nucleic Acids Res; 2016 May; 44(9):e85. PubMed ID: 26850641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced CRISPR/Cas9-mediated precise genome editing by improved design and delivery of gRNA, Cas9 nuclease, and donor DNA.
    Liang X; Potter J; Kumar S; Ravinder N; Chesnut JD
    J Biotechnol; 2017 Jan; 241():136-146. PubMed ID: 27845164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome editing using CRISPR/Cas9-based knock-in approaches in zebrafish.
    Albadri S; Del Bene F; Revenu C
    Methods; 2017 May; 121-122():77-85. PubMed ID: 28300641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expanding the editable genome and CRISPR-Cas9 versatility using DNA cutting-free gene targeting based on in trans paired nicking.
    Chen X; Tasca F; Wang Q; Liu J; Janssen JM; Brescia MD; Bellin M; Szuhai K; Kenrick J; Frock RL; Gonçalves MAFV
    Nucleic Acids Res; 2020 Jan; 48(2):974-995. PubMed ID: 31799604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow cytometry-based quantification of targeted knock-in events in human cell lines using a GPI-anchor biosynthesis gene PIGP.
    Rahman ML; Hyodo T; Hasan MN; Mihara Y; Karnan S; Ota A; Tsuzuki S; Hosokawa Y; Konishi H
    Biosci Rep; 2021 Dec; 41(12):. PubMed ID: 34750615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeted integration in human cells through single crossover mediated by ZFN or CRISPR/Cas9.
    Liu X; Wang M; Qin Y; Shi X; Cong P; Chen Y; He Z
    BMC Biotechnol; 2018 Oct; 18(1):66. PubMed ID: 30340581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precise in-frame integration of exogenous DNA mediated by CRISPR/Cas9 system in zebrafish.
    Hisano Y; Sakuma T; Nakade S; Ohga R; Ota S; Okamoto H; Yamamoto T; Kawahara A
    Sci Rep; 2015 Mar; 5():8841. PubMed ID: 25740433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards mastering CRISPR-induced gene knock-in in plants: Survey of key features and focus on the model Physcomitrella patens.
    Collonnier C; Guyon-Debast A; Maclot F; Mara K; Charlot F; Nogué F
    Methods; 2017 May; 121-122():103-117. PubMed ID: 28478103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Practical method for targeted disruption of cilia-related genes by using CRISPR/Cas9-mediated, homology-independent knock-in system.
    Katoh Y; Michisaka S; Nozaki S; Funabashi T; Hirano T; Takei R; Nakayama K
    Mol Biol Cell; 2017 Apr; 28(7):898-906. PubMed ID: 28179459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome editing with the donor plasmid equipped with synthetic crRNA-target sequence.
    Ishibashi R; Abe K; Ido N; Kitano S; Miyachi H; Toyoshima F
    Sci Rep; 2020 Aug; 10(1):14120. PubMed ID: 32839482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient generation of knock-in transgenic zebrafish carrying reporter/driver genes by CRISPR/Cas9-mediated genome engineering.
    Kimura Y; Hisano Y; Kawahara A; Higashijima S
    Sci Rep; 2014 Oct; 4():6545. PubMed ID: 25293390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair.
    Auer TO; Duroure K; De Cian A; Concordet JP; Del Bene F
    Genome Res; 2014 Jan; 24(1):142-53. PubMed ID: 24179142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient biallelic knock-in in mouse embryonic stem cells by in vivo-linearization of donor and transient inhibition of DNA polymerase θ/DNA-PK.
    Arai D; Nakao Y
    Sci Rep; 2021 Sep; 11(1):18132. PubMed ID: 34518609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity.
    Ran FA; Hsu PD; Lin CY; Gootenberg JS; Konermann S; Trevino AE; Scott DA; Inoue A; Matoba S; Zhang Y; Zhang F
    Cell; 2013 Sep; 154(6):1380-9. PubMed ID: 23992846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elevated expression of exogenous RAD51 enhances the CRISPR/Cas9-mediated genome editing efficiency.
    Park SJ; Yoon S; Choi EH; Hyeon H; Lee K; Kim KP
    BMB Rep; 2023 Feb; 56(2):102-107. PubMed ID: 36513383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.