These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 34799678)

  • 1. PremPLI: a machine learning model for predicting the effects of missense mutations on protein-ligand interactions.
    Sun T; Chen Y; Wen Y; Zhu Z; Li M
    Commun Biol; 2021 Nov; 4(1):1311. PubMed ID: 34799678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PremPS: Predicting the impact of missense mutations on protein stability.
    Chen Y; Lu H; Zhang N; Zhu Z; Wang S; Li M
    PLoS Comput Biol; 2020 Dec; 16(12):e1008543. PubMed ID: 33378330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of impacts of mutations on protein structure and interactions: SDM, a statistical approach, and mCSM, using machine learning.
    Pandurangan AP; Blundell TL
    Protein Sci; 2020 Jan; 29(1):247-257. PubMed ID: 31693276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PremPDI estimates and interprets the effects of missense mutations on protein-DNA interactions.
    Zhang N; Chen Y; Zhao F; Yang Q; Simonetti FL; Li M
    PLoS Comput Biol; 2018 Dec; 14(12):e1006615. PubMed ID: 30533007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SPLDExtraTrees: robust machine learning approach for predicting kinase inhibitor resistance.
    Yang ZY; Ye ZF; Xiao YJ; Hsieh CY; Zhang SY
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35262669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing the performance of computational predictors for estimating protein stability changes upon missense mutations.
    Iqbal S; Li F; Akutsu T; Ascher DB; Webb GI; Song J
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34058752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting Kinase Inhibitor Resistance: Physics-Based and Data-Driven Approaches.
    Aldeghi M; Gapsys V; de Groot BL
    ACS Cent Sci; 2019 Aug; 5(8):1468-1474. PubMed ID: 31482130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistical and machine learning approaches to predicting protein-ligand interactions.
    Colwell LJ
    Curr Opin Struct Biol; 2018 Apr; 49():123-128. PubMed ID: 29452923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. iSEE: Interface structure, evolution, and energy-based machine learning predictor of binding affinity changes upon mutations.
    Geng C; Vangone A; Folkers GE; Xue LC; Bonvin AMJJ
    Proteins; 2019 Feb; 87(2):110-119. PubMed ID: 30417935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of protein-ligand interactions from paired protein sequence motifs and ligand substructures.
    Greenside P; Hillenmeyer M; Kundaje A
    Pac Symp Biocomput; 2018; 23():20-31. PubMed ID: 29218866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting the impacts of mutations on protein-ligand binding affinity based on molecular dynamics simulations and machine learning methods.
    Wang DD; Ou-Yang L; Xie H; Zhu M; Yan H
    Comput Struct Biotechnol J; 2020; 18():439-454. PubMed ID: 32153730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PANDA: Predicting the change in proteins binding affinity upon mutations by finding a signal in primary structures.
    Abbasi WA; Abbas SA; Andleeb S
    J Bioinform Comput Biol; 2021 Aug; 19(4):2150015. PubMed ID: 34126874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PSnpBind-ML: predicting the effect of binding site mutations on protein-ligand binding affinity.
    Ammar A; Cavill R; Evelo C; Willighagen E
    J Cheminform; 2023 Mar; 15(1):31. PubMed ID: 36864534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constructing query-driven dynamic machine learning model with application to protein-ligand binding sites prediction.
    Yu DJ; Hu J; Li QM; Tang ZM; Yang JY; Shen HB
    IEEE Trans Nanobioscience; 2015 Jan; 14(1):45-58. PubMed ID: 25730499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Impact of Crystallographic Data for the Development of Machine Learning Models to Predict Protein-Ligand Binding Affinity.
    Veit-Acosta M; de Azevedo Junior WF
    Curr Med Chem; 2021 Oct; 28(34):7006-7022. PubMed ID: 33568025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. mCSM-lig: quantifying the effects of mutations on protein-small molecule affinity in genetic disease and emergence of drug resistance.
    Pires DE; Blundell TL; Ascher DB
    Sci Rep; 2016 Jul; 6():29575. PubMed ID: 27384129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Comparative Assessment of Predictive Accuracies of Conventional and Machine Learning Scoring Functions for Protein-Ligand Binding Affinity Prediction.
    Ashtawy HM; Mahapatra NR
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(2):335-47. PubMed ID: 26357221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinact: a computational approach for predicting activating missense mutations in protein kinases.
    Rodrigues CH; Ascher DB; Pires DE
    Nucleic Acids Res; 2018 Jul; 46(W1):W127-W132. PubMed ID: 29788456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning from the ligand: using ligand-based features to improve binding affinity prediction.
    Boyles F; Deane CM; Morris GM
    Bioinformatics; 2020 Feb; 36(3):758-764. PubMed ID: 31598630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.