These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

557 related articles for article (PubMed ID: 34800179)

  • 1. Machine learning-based CT radiomics approach for predicting WHO/ISUP nuclear grade of clear cell renal cell carcinoma: an exploratory and comparative study.
    Xv Y; Lv F; Guo H; Zhou X; Tan H; Xiao M; Zheng Y
    Insights Imaging; 2021 Nov; 12(1):170. PubMed ID: 34800179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A CT-Based Radiomics Nomogram Integrated With Clinic-Radiological Features for Preoperatively Predicting WHO/ISUP Grade of Clear Cell Renal Cell Carcinoma.
    Xv Y; Lv F; Guo H; Liu Z; Luo D; Liu J; Gou X; He W; Xiao M; Zheng Y
    Front Oncol; 2021; 11():712554. PubMed ID: 34926241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preoperative Predicting the WHO/ISUP Nuclear Grade of Clear Cell Renal Cell Carcinoma by Computed Tomography-Based Radiomics Features.
    Moldovanu CG; Boca B; Lebovici A; Tamas-Szora A; Feier DS; Crisan N; Andras I; Buruian MM
    J Pers Med; 2020 Dec; 11(1):. PubMed ID: 33374569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clear cell renal cell carcinoma: Machine learning-based computed tomography radiomics analysis for the prediction of WHO/ISUP grade.
    Shu J; Wen D; Xi Y; Xia Y; Cai Z; Xu W; Meng X; Liu B; Yin H
    Eur J Radiol; 2019 Dec; 121():108738. PubMed ID: 31756634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of ISUP grading of clear cell renal cell carcinoma using support vector machine model based on CT images.
    Sun X; Liu L; Xu K; Li W; Huo Z; Liu H; Shen T; Pan F; Jiang Y; Zhang M
    Medicine (Baltimore); 2019 Apr; 98(14):e15022. PubMed ID: 30946334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and Validation of Contrast-Enhanced CT-Based Deep Transfer Learning and Combined Clinical-Radiomics Model to Discriminate Thymomas and Thymic Cysts: A Multicenter Study.
    Yang Y; Cheng J; Peng Z; Yi L; Lin Z; He A; Jin M; Cui C; Liu Y; Zhong Q; Zuo M
    Acad Radiol; 2024 Apr; 31(4):1615-1628. PubMed ID: 37949702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting the WHO/ISUP Grade of Clear Cell Renal Cell Carcinoma Through CT-Based Tumoral and Peritumoral Radiomics.
    Ma Y; Guan Z; Liang H; Cao H
    Front Oncol; 2022; 12():831112. PubMed ID: 35237524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computed Tomography-Based Radiomics Model to Predict Central Cervical Lymph Node Metastases in Papillary Thyroid Carcinoma: A Multicenter Study.
    Li J; Wu X; Mao N; Zheng G; Zhang H; Mou Y; Jia C; Mi J; Song X
    Front Endocrinol (Lausanne); 2021; 12():741698. PubMed ID: 34745008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiomics Analysis of Computed Tomography for Prediction of Thyroid Capsule Invasion in Papillary Thyroid Carcinoma: A Multi-Classifier and Two-Center Study.
    Wu X; Yu P; Jia C; Mao N; Che K; Li G; Zhang H; Mou Y; Song X
    Front Endocrinol (Lausanne); 2022; 13():849065. PubMed ID: 35692398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiphase CT radiomics nomogram for preoperatively predicting the WHO/ISUP nuclear grade of small (< 4 cm) clear cell renal cell carcinoma.
    Gao Y; Wang X; Zhao X; Zhu C; Li C; Li J; Wu X
    BMC Cancer; 2023 Oct; 23(1):953. PubMed ID: 37814228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning models combining computed tomography semantic features and selected clinical variables for accurate prediction of the pathological grade of bladder cancer.
    Deng Z; Dong W; Xiong S; Jin D; Zhou H; Zhang L; Xie L; Deng Y; Xu R; Fan B
    Front Oncol; 2023; 13():1166245. PubMed ID: 37223680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of Clinical Outcome for High-Intensity Focused Ultrasound Ablation of Uterine Leiomyomas Using Multiparametric MRI Radiomics-Based Machine Leaning Model.
    Zheng Y; Chen L; Liu M; Wu J; Yu R; Lv F
    Front Oncol; 2021; 11():618604. PubMed ID: 34567999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incremental value of automatically segmented perirenal adipose tissue for pathological grading of clear cell renal cell carcinoma: a multicenter cohort study.
    Li S; Zhou Z; Gao M; Liao Z; He K; Qu W; Li J; Kamel IR; Chu Q; Zhang Q; Li Z
    Int J Surg; 2024 Jul; 110(7):4221-4230. PubMed ID: 38573065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computed Tomography Radiomics for Predicting Pathological Grade of Renal Cell Carcinoma.
    Yi X; Xiao Q; Zeng F; Yin H; Li Z; Qian C; Wang C; Lei G; Xu Q; Li C; Li M; Gong G; Zee C; Guan X; Liu L; Chen BT
    Front Oncol; 2020; 10():570396. PubMed ID: 33585193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiphasic CT-Based Radiomics Analysis for the Differentiation of Benign and Malignant Parotid Tumors.
    Yu Q; Wang A; Gu J; Li Q; Ning Y; Peng J; Lv F; Zhang X
    Front Oncol; 2022; 12():913898. PubMed ID: 35847942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning model based on enhanced CT radiomics for the preoperative prediction of lymphovascular invasion in esophageal squamous cell carcinoma.
    Wang Y; Bai G; Huang M; Chen W
    Front Oncol; 2024; 14():1308317. PubMed ID: 38549935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of unenhanced lesion evolution in multiple sclerosis using radiomics-based models: a machine learning approach.
    Peng Y; Zheng Y; Tan Z; Liu J; Xiang Y; Liu H; Dai L; Xie Y; Wang J; Zeng C; Li Y
    Mult Scler Relat Disord; 2021 Aug; 53():102989. PubMed ID: 34052741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced computed tomography radiomics-based machine-learning methods for predicting the Fuhrman grades of renal clear cell carcinoma.
    Yin RH; Yang YC; Tang XQ; Shi HF; Duan SF; Pan CJ
    J Xray Sci Technol; 2021; 29(6):1149-1160. PubMed ID: 34657848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiomics analysis of contrast-enhanced CT scans can distinguish between clear cell and non-clear cell renal cell carcinoma in different imaging protocols.
    Budai BK; Stollmayer R; Rónaszéki AD; Körmendy B; Zsombor Z; Palotás L; Fejér B; Szendrõi A; Székely E; Maurovich-Horvat P; Kaposi PN
    Front Med (Lausanne); 2022; 9():974485. PubMed ID: 36314024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Can texture analysis based on single unenhanced CT accurately predict the WHO/ISUP grading of localized clear cell renal cell carcinoma?
    Wang X; Song G; Jiang H; Zheng L; Pang P; Xu J
    Abdom Radiol (NY); 2021 Sep; 46(9):4289-4300. PubMed ID: 33909090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.