These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 34800180)

  • 1. Approximating Quasi-Stationary Behaviour in Network-Based SIS Dynamics.
    Overton CE; Wilkinson RR; Loyinmi A; Miller JC; Sharkey KJ
    Bull Math Biol; 2021 Nov; 84(1):4. PubMed ID: 34800180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving pairwise approximations for network models with susceptible-infected-susceptible dynamics.
    Leng T; Keeling MJ
    J Theor Biol; 2020 Sep; 500():110328. PubMed ID: 32454058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precise Estimates of Persistence Time for SIS Infections in Heterogeneous Populations.
    Clancy D
    Bull Math Biol; 2018 Nov; 80(11):2871-2896. PubMed ID: 30206808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel moment closure approximations in stochastic epidemics.
    Krishnarajah I; Cook A; Marion G; Gibson G
    Bull Math Biol; 2005 Jul; 67(4):855-73. PubMed ID: 15893556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stochastic dynamics of an SIS epidemic on networks.
    Jing X; Liu G; Jin Z
    J Math Biol; 2022 May; 84(6):50. PubMed ID: 35513730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stochastic epidemic metapopulation models on networks: SIS dynamics and control strategies.
    Krause AL; Kurowski L; Yawar K; Van Gorder RA
    J Theor Biol; 2018 Jul; 449():35-52. PubMed ID: 29673907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oscillating epidemics in a dynamic network model: stochastic and mean-field analysis.
    Szabó-Solticzky A; Berthouze L; Kiss IZ; Simon PL
    J Math Biol; 2016 Apr; 72(5):1153-76. PubMed ID: 26063525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exact Equations for SIR Epidemics on Tree Graphs.
    Sharkey KJ; Kiss IZ; Wilkinson RR; Simon PL
    Bull Math Biol; 2015 Apr; 77(4):614-45. PubMed ID: 24347252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling a SI epidemic with stochastic transmission: hyperbolic incidence rate.
    Christen A; Maulén-Yañez MA; González-Olivares E; Curé M
    J Math Biol; 2018 Mar; 76(4):1005-1026. PubMed ID: 28752421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stochastic modeling of SIS epidemics with logarithmic Ornstein-Uhlenbeck process and generalized nonlinear incidence.
    Shi Z; Jiang D
    Math Biosci; 2023 Nov; 365():109083. PubMed ID: 37776947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SIS Epidemic Propagation on Hypergraphs.
    Bodó Á; Katona GY; Simon PL
    Bull Math Biol; 2016 Apr; 78(4):713-735. PubMed ID: 27033348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The large graph limit of a stochastic epidemic model on a dynamic multilayer network.
    Jacobsen KA; Burch MG; Tien JH; Rempała GA
    J Biol Dyn; 2018 Dec; 12(1):746-788. PubMed ID: 30175687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deterministic epidemic models on contact networks: correlations and unbiological terms.
    Sharkey KJ
    Theor Popul Biol; 2011 Jun; 79(4):115-29. PubMed ID: 21354193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exact and approximate moment closures for non-Markovian network epidemics.
    Pellis L; House T; Keeling MJ
    J Theor Biol; 2015 Oct; 382():160-77. PubMed ID: 25975999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The relationships between message passing, pairwise, Kermack-McKendrick and stochastic SIR epidemic models.
    Wilkinson RR; Ball FG; Sharkey KJ
    J Math Biol; 2017 Dec; 75(6-7):1563-1590. PubMed ID: 28409223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of epidemiological models.
    Pinto A; Aguiar M; Martins J; Stollenwerk N
    Acta Biotheor; 2010 Dec; 58(4):381-9. PubMed ID: 20661626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stationarity in moment closure and quasi-stationarity of the SIS model.
    Martins J; Pinto A; Stollenwerk N
    Math Biosci; 2012 Apr; 236(2):126-31. PubMed ID: 22386618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simple Approximations for Epidemics with Exponential and Fixed Infectious Periods.
    Fowler AC; Hollingsworth TD
    Bull Math Biol; 2015 Aug; 77(8):1539-55. PubMed ID: 26337289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of stochastic epidemics on heterogeneous networks.
    Graham M; House T
    J Math Biol; 2014 Jun; 68(7):1583-605. PubMed ID: 23633042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A stochastic SIS epidemic with demography: initial stages and time to extinction.
    Andersson P; Lindenstrand D
    J Math Biol; 2011 Mar; 62(3):333-48. PubMed ID: 20309550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.