BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 34800362)

  • 1. Multi-layer CRISPRa/i circuits for dynamic genetic programs in cell-free and bacterial systems.
    Tickman BI; Burbano DA; Chavali VP; Kiattisewee C; Fontana J; Khakimzhan A; Noireaux V; Zalatan JG; Carothers JM
    Cell Syst; 2022 Mar; 13(3):215-229.e8. PubMed ID: 34800362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering activatable promoters for scalable and multi-input CRISPRa/i circuits.
    Alba Burbano D; Cardiff RAL; Tickman BI; Kiattisewee C; Maranas CJ; Zalatan JG; Carothers JM
    Proc Natl Acad Sci U S A; 2023 Jul; 120(30):e2220358120. PubMed ID: 37463216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineered CRISPRa enables programmable eukaryote-like gene activation in bacteria.
    Liu Y; Wan X; Wang B
    Nat Commun; 2019 Aug; 10(1):3693. PubMed ID: 31451697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetic Gene Circuits Combining CRISPR Interference and CRISPR Activation in
    Barbier I; Kusumawardhani H; Chauhan L; Harlapur PV; Jolly MK; Schaerli Y
    ACS Synth Biol; 2023 Oct; 12(10):3064-3071. PubMed ID: 37813387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulated Expression of sgRNAs Tunes CRISPRi in E. coli.
    Fontana J; Dong C; Ham JY; Zalatan JG; Carothers JM
    Biotechnol J; 2018 Sep; 13(9):e1800069. PubMed ID: 29635744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design, Characterization, and Application of Targeted Gene Activation in Bacteria Using a Modular CRISPRa System.
    Villegas Kcam MC; Chappell J
    Methods Mol Biol; 2022; 2518():203-215. PubMed ID: 35666447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematic Evaluation of CRISPRa and CRISPRi Modalities Enables Development of a Multiplexed, Orthogonal Gene Activation and Repression System.
    Martella A; Firth M; Taylor BJM; Göppert A; Cuomo EM; Roth RG; Dickson AJ; Fisher DI
    ACS Synth Biol; 2019 Sep; 8(9):1998-2006. PubMed ID: 31398008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR-Cas-mediated transcriptional modulation: The therapeutic promises of CRISPRa and CRISPRi.
    Bendixen L; Jensen TI; Bak RO
    Mol Ther; 2023 Jul; 31(7):1920-1937. PubMed ID: 36964659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overcoming Leak Sensitivity in CRISPRi Circuits Using Antisense RNA Sequestration and Regulatory Feedback.
    Specht DA; Cortes LB; Lambert G
    ACS Synth Biol; 2022 Sep; 11(9):2927-2937. PubMed ID: 36017994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Challenges and opportunities with CRISPR activation in bacteria for data-driven metabolic engineering.
    Fontana J; Sparkman-Yager D; Zalatan JG; Carothers JM
    Curr Opin Biotechnol; 2020 Aug; 64():190-198. PubMed ID: 32599515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel Prokaryotic CRISPR-Cas12a-Based Tool for Programmable Transcriptional Activation and Repression.
    Schilling C; Koffas MAG; Sieber V; Schmid J
    ACS Synth Biol; 2020 Dec; 9(12):3353-3363. PubMed ID: 33238093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective CRISPRa-mediated control of gene expression in bacteria must overcome strict target site requirements.
    Fontana J; Dong C; Kiattisewee C; Chavali VP; Tickman BI; Carothers JM; Zalatan JG
    Nat Commun; 2020 Apr; 11(1):1618. PubMed ID: 32238808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Portable bacterial CRISPR transcriptional activation enables metabolic engineering in Pseudomonas putida.
    Kiattisewee C; Dong C; Fontana J; Sugianto W; Peralta-Yahya P; Carothers JM; Zalatan JG
    Metab Eng; 2021 Jul; 66():283-295. PubMed ID: 33930546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted Modulation of Chicken Genes In Vitro Using CRISPRa and CRISPRi Toolkit.
    Chapman B; Han JH; Lee HJ; Ruud I; Kim TH
    Genes (Basel); 2023 Apr; 14(4):. PubMed ID: 37107664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeted regulation of transcription in primary cells using CRISPRa and CRISPRi.
    Jensen TI; Mikkelsen NS; Gao Z; Foßelteder J; Pabst G; Axelgaard E; Laustsen A; König S; Reinisch A; Bak RO
    Genome Res; 2021 Nov; 31(11):2120-2130. PubMed ID: 34407984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multistable and dynamic CRISPRi-based synthetic circuits.
    Santos-Moreno J; Tasiudi E; Stelling J; Schaerli Y
    Nat Commun; 2020 Jun; 11(1):2746. PubMed ID: 32488086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and Model-Driven Analysis of Synthetic Circuits with the
    De Marchi D; Shaposhnikov R; Gobaa S; Pastorelli D; Batt G; Magni P; Pasotti L
    ACS Synth Biol; 2024 Mar; 13(3):763-780. PubMed ID: 38374729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uncovering the Distinct Properties of a Bacterial Type I-E CRISPR Activation System.
    Villegas Kcam MC; Tsong AJ; Chappell J
    ACS Synth Biol; 2022 Feb; 11(2):1000-1003. PubMed ID: 35077145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR Interference (CRISPRi) and CRISPR Activation (CRISPRa) to Explore the Oncogenic lncRNA Network.
    Morelli E; Gulla' A; Amodio N; Taiana E; Neri A; Fulciniti M; Munshi NC
    Methods Mol Biol; 2021; 2348():189-204. PubMed ID: 34160808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rational engineering of a modular bacterial CRISPR-Cas activation platform with expanded target range.
    Villegas Kcam MC; Tsong AJ; Chappell J
    Nucleic Acids Res; 2021 May; 49(8):4793-4802. PubMed ID: 33823546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.