These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 34800744)

  • 1. Real-time kinematic-based detection of foot-strike during walking.
    Karakasis C; Artemiadis P
    J Biomech; 2021 Dec; 129():110849. PubMed ID: 34800744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Foot angular kinematics measured with inertial measurement units: A reliable criterion for real-time gait event detection.
    Nazarahari M; Khandan A; Khan A; Rouhani H
    J Biomech; 2022 Jan; 130():110880. PubMed ID: 34871897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel kinematic detection of foot-strike and toe-off events during noninstrumented treadmill running to estimate contact time.
    Patoz A; Lussiana T; Gindre C; Malatesta D
    J Biomech; 2021 Nov; 128():110737. PubMed ID: 34517256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of kinematic-based gait event detection methods in a self-paced treadmill application.
    Hendershot BD; Mahon CE; Pruziner AL
    J Biomech; 2016 Dec; 49(16):4146-4149. PubMed ID: 27825601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel velocity estimation for symmetric and asymmetric self-paced treadmill training.
    Canete S; Jacobs DA
    J Neuroeng Rehabil; 2021 Feb; 18(1):27. PubMed ID: 33546729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and validation of FootNet; a new kinematic algorithm to improve foot-strike and toe-off detection in treadmill running.
    Rivadulla A; Chen X; Weir G; Cazzola D; Trewartha G; Hamill J; Preatoni E
    PLoS One; 2021; 16(8):e0248608. PubMed ID: 34370747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two simple methods for determining gait events during treadmill and overground walking using kinematic data.
    Zeni JA; Richards JG; Higginson JS
    Gait Posture; 2008 May; 27(4):710-4. PubMed ID: 17723303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the performance of 17 algorithms from a systematic review: Influence of sensor position, analysed variable and computational approach in gait timing estimation from IMU measurements.
    Pacini Panebianco G; Bisi MC; Stagni R; Fantozzi S
    Gait Posture; 2018 Oct; 66():76-82. PubMed ID: 30170137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Agreement of Gait Events Detection during Treadmill Backward Walking by Kinematic Data and Inertial Motion Units.
    Gottlieb U; Balasukumaran T; Hoffman JR; Springer S
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33171972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting timing of foot strike during running, independent of striking technique, using principal component analysis of joint angles.
    Osis ST; Hettinga BA; Leitch J; Ferber R
    J Biomech; 2014 Aug; 47(11):2786-9. PubMed ID: 25011620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of an IMU-based foot-ground contact detection (FGCD) algorithm.
    Kim M; Lee D
    Ergonomics; 2017 Mar; 60(3):384-403. PubMed ID: 27068742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the performance of accelerometer-based gait event detection algorithms in different real-world scenarios using the MAREA gait database.
    Khandelwal S; Wickström N
    Gait Posture; 2017 Jan; 51():84-90. PubMed ID: 27736735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of gait cycles in treadmill walking using a Kinect.
    Auvinet E; Multon F; Aubin CE; Meunier J; Raison M
    Gait Posture; 2015 Feb; 41(2):722-5. PubMed ID: 25442670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic identification of gait events during walking on uneven surfaces.
    Eckardt N; Kibele A
    Gait Posture; 2017 Feb; 52():83-86. PubMed ID: 27888695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact-Aware Foot Motion Reconstruction and Ramp/Stair Detection Using One Foot-Mounted Inertial Measurement Unit.
    Wang Y; Fehr KH; Adamczyk PG
    Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38475012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accuracy of the Microsoft Kinect for measuring gait parameters during treadmill walking.
    Xu X; McGorry RW; Chou LS; Lin JH; Chang CC
    Gait Posture; 2015 Jul; 42(2):145-51. PubMed ID: 26002604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of Ankle Joint Power during Walking Using Two Inertial Sensors.
    Jiang X; Gholami M; Khoshnam M; Eng JJ; Menon C
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31234451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of three kinematic gait event detection methods during overground and treadmill walking for individuals post stroke.
    French MA; Koller C; Arch ES
    J Biomech; 2020 Jan; 99():109481. PubMed ID: 31718818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated event detection algorithms in pathological gait.
    Bruening DA; Ridge ST
    Gait Posture; 2014; 39(1):472-7. PubMed ID: 24041468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gait event detection using a thigh-worn accelerometer.
    Gurchiek RD; Garabed CP; McGinnis RS
    Gait Posture; 2020 Jul; 80():214-216. PubMed ID: 32535399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.