These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34800809)

  • 1. Automatic multi-organ segmentation from abdominal CT volumes with LLE-based graph partitioning and 3D Chan-Vese model.
    Tang P; Zhao YQ; Liao M
    Comput Biol Med; 2021 Dec; 139():105030. PubMed ID: 34800809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets.
    Hu P; Wu F; Peng J; Bao Y; Chen F; Kong D
    Int J Comput Assist Radiol Surg; 2017 Mar; 12(3):399-411. PubMed ID: 27885540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic 3D liver location and segmentation via convolutional neural network and graph cut.
    Lu F; Wu F; Hu P; Peng Z; Kong D
    Int J Comput Assist Radiol Surg; 2017 Feb; 12(2):171-182. PubMed ID: 27604760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient liver segmentation in CT images based on graph cuts and bottleneck detection.
    Liao M; Zhao YQ; Wang W; Zeng YZ; Yang Q; Shih FY; Zou BJ
    Phys Med; 2016 Nov; 32(11):1383-1396. PubMed ID: 27771278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A variational approach to liver segmentation using statistics from multiple sources.
    Zheng S; Fang B; Li L; Gao M; Wang Y
    Phys Med Biol; 2018 Jan; 63(2):025024. PubMed ID: 29265012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic liver segmentation from abdominal CT volumes using graph cuts and border marching.
    Liao M; Zhao YQ; Liu XY; Zeng YZ; Zou BJ; Wang XF; Shih FY
    Comput Methods Programs Biomed; 2017 May; 143():1-12. PubMed ID: 28391807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic 3D CT liver segmentation based on fast global minimization of probabilistic active contour.
    Jin R; Wang M; Xu L; Lu J; Song E; Ma G
    Med Phys; 2023 Apr; 50(4):2100-2120. PubMed ID: 36413182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast automatic 3D liver segmentation based on a three-level AdaBoost-guided active shape model.
    He B; Huang C; Sharp G; Zhou S; Hu Q; Fang C; Fan Y; Jia F
    Med Phys; 2016 May; 43(5):2421. PubMed ID: 27147353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Abdominal multi-organ segmentation with organ-attention networks and statistical fusion.
    Wang Y; Zhou Y; Shen W; Park S; Fishman EK; Yuille AL
    Med Image Anal; 2019 Jul; 55():88-102. PubMed ID: 31035060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface-GCN: Learning interaction experience for organ segmentation in 3D medical images.
    Tian F; Tian Z; Chen Z; Zhang D; Du S
    Med Phys; 2023 Aug; 50(8):5030-5044. PubMed ID: 36738103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blood vessel-based liver segmentation using the portal phase of an abdominal CT dataset.
    Maklad AS; Matsuhiro M; Suzuki H; Kawata Y; Niki N; Satake M; Moriyama N; Utsunomiya T; Shimada M
    Med Phys; 2013 Nov; 40(11):113501. PubMed ID: 24320472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fully automatic liver segmentation in CT images using modified graph cuts and feature detection.
    Huang Q; Ding H; Wang X; Wang G
    Comput Biol Med; 2018 Apr; 95():198-208. PubMed ID: 29524804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A segmentation framework for abdominal organs from CT scans.
    Campadelli P; Casiraghi E; Pratissoli S
    Artif Intell Med; 2010 Sep; 50(1):3-11. PubMed ID: 20542673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Segmentation of abdomen MR images using kernel graph cuts with shape priors.
    Luo Q; Qin W; Wen T; Gu J; Gaio N; Chen S; Li L; Xie Y
    Biomed Eng Online; 2013 Dec; 12():124. PubMed ID: 24295198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Abdominal multi-organ segmentation from CT images using conditional shape-location and unsupervised intensity priors.
    Okada T; Linguraru MG; Hori M; Summers RM; Tomiyama N; Sato Y
    Med Image Anal; 2015 Dec; 26(1):1-18. PubMed ID: 26277022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fully automated lesion segmentation and visualization in automated whole breast ultrasound (ABUS) images.
    Lee CY; Chang TF; Chou YH; Yang KC
    Quant Imaging Med Surg; 2020 Mar; 10(3):568-584. PubMed ID: 32269918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D automatic liver segmentation using feature-constrained Mahalanobis distance in CT images.
    Salman Al-Shaikhli SD; Yang MY; Rosenhahn B
    Biomed Tech (Berl); 2016 Aug; 61(4):401-12. PubMed ID: 26501155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic localization of solid organs on 3D CT images by a collaborative majority voting decision based on ensemble learning.
    Zhou X; Wang S; Chen H; Hara T; Yokoyama R; Kanematsu M; Fujita H
    Comput Med Imaging Graph; 2012 Jun; 36(4):304-13. PubMed ID: 22421130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Liver segmentation from abdominal CT volumes based on level set and sparse shape composition.
    Li Y; Zhao YQ; Zhang F; Liao M; Yu LL; Chen BF; Wang YJ
    Comput Methods Programs Biomed; 2020 Oct; 195():105533. PubMed ID: 32502932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shape-intensity prior level set combining probabilistic atlas and probability map constrains for automatic liver segmentation from abdominal CT images.
    Wang J; Cheng Y; Guo C; Wang Y; Tamura S
    Int J Comput Assist Radiol Surg; 2016 May; 11(5):817-26. PubMed ID: 26646416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.