These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
312 related articles for article (PubMed ID: 34800847)
1. Comparison of time-to-event machine learning models in predicting oral cavity cancer prognosis. Adeoye J; Hui L; Koohi-Moghadam M; Tan JY; Choi SW; Thomson P Int J Med Inform; 2022 Jan; 157():104635. PubMed ID: 34800847 [TBL] [Abstract][Full Text] [Related]
2. Predicting Colorectal Cancer Survival Using Time-to-Event Machine Learning: Retrospective Cohort Study. Yang X; Qiu H; Wang L; Wang X J Med Internet Res; 2023 Oct; 25():e44417. PubMed ID: 37883174 [TBL] [Abstract][Full Text] [Related]
3. Development and validation of machine learning models for predicting prognosis and guiding individualized postoperative chemotherapy: A real-world study of distal cholangiocarcinoma. Wang D; Pan B; Huang JC; Chen Q; Cui SP; Lang R; Lyu SC Front Oncol; 2023; 13():1106029. PubMed ID: 37007095 [TBL] [Abstract][Full Text] [Related]
4. Deep Learning Predicts the Malignant-Transformation-Free Survival of Oral Potentially Malignant Disorders. Adeoye J; Koohi-Moghadam M; Lo AWI; Tsang RK; Chow VLY; Zheng LW; Choi SW; Thomson P; Su YX Cancers (Basel); 2021 Dec; 13(23):. PubMed ID: 34885164 [TBL] [Abstract][Full Text] [Related]
5. Deep learning models for predicting the survival of patients with chondrosarcoma based on a surveillance, epidemiology, and end results analysis. Yan L; Gao N; Ai F; Zhao Y; Kang Y; Chen J; Weng Y Front Oncol; 2022; 12():967758. PubMed ID: 36072795 [TBL] [Abstract][Full Text] [Related]
6. The Application and Comparison of Machine Learning Models for the Prediction of Breast Cancer Prognosis: Retrospective Cohort Study. Xiao J; Mo M; Wang Z; Zhou C; Shen J; Yuan J; He Y; Zheng Y JMIR Med Inform; 2022 Feb; 10(2):e33440. PubMed ID: 35179504 [TBL] [Abstract][Full Text] [Related]
7. Deep learning models for predicting the survival of patients with hepatocellular carcinoma based on a surveillance, epidemiology, and end results (SEER) database analysis. Wang S; Shao M; Fu Y; Zhao R; Xing Y; Zhang L; Xu Y Sci Rep; 2024 Jun; 14(1):13232. PubMed ID: 38853169 [TBL] [Abstract][Full Text] [Related]
8. Development and validation of a deep learning-based survival prediction model for pediatric glioma patients: A retrospective study using the SEER database and Chinese data. Jiao Y; Ye J; Zhao W; Fan Z; Kou Y; Guo S; Chao M; Fan C; Ji P; Liu J; Zhai Y; Wang Y; Wang N; Wang L Comput Biol Med; 2024 Nov; 182():109185. PubMed ID: 39341114 [TBL] [Abstract][Full Text] [Related]
9. Development and validation of survival prediction model for gastric adenocarcinoma patients using deep learning: A SEER-based study. Zeng J; Li K; Cao F; Zheng Y Front Oncol; 2023; 13():1131859. PubMed ID: 36959782 [TBL] [Abstract][Full Text] [Related]
10. Prediction models applying machine learning to oral cavity cancer outcomes: A systematic review. Adeoye J; Tan JY; Choi SW; Thomson P Int J Med Inform; 2021 Oct; 154():104557. PubMed ID: 34455119 [TBL] [Abstract][Full Text] [Related]
11. Does the SORG Algorithm Predict 5-year Survival in Patients with Chondrosarcoma? An External Validation. Bongers MER; Thio QCBS; Karhade AV; Stor ML; Raskin KA; Lozano Calderon SA; DeLaney TF; Ferrone ML; Schwab JH Clin Orthop Relat Res; 2019 Oct; 477(10):2296-2303. PubMed ID: 31107338 [TBL] [Abstract][Full Text] [Related]
12. Predicting overall survival in chordoma patients using machine learning models: a web-app application. Cheng P; Xie X; Knoedler S; Mi B; Liu G J Orthop Surg Res; 2023 Sep; 18(1):652. PubMed ID: 37660044 [TBL] [Abstract][Full Text] [Related]
13. Machine learning methods for accurately predicting survival and guiding treatment in stage I and II hepatocellular carcinoma. Li X; Bao H; Shi Y; Zhu W; Peng Z; Yan L; Chen J; Shu X Medicine (Baltimore); 2023 Nov; 102(45):e35892. PubMed ID: 37960763 [TBL] [Abstract][Full Text] [Related]
14. Which model is better in predicting the survival of laryngeal squamous cell carcinoma?: Comparison of the random survival forest based on machine learning algorithms to Cox regression: analyses based on SEER database. Sun H; Wu S; Li S; Jiang X Medicine (Baltimore); 2023 Mar; 102(10):e33144. PubMed ID: 36897699 [TBL] [Abstract][Full Text] [Related]
15. Comparison of the cox regression to machine learning in predicting the survival of anaplastic thyroid carcinoma. Xu L; Cai L; Zhu Z; Chen G BMC Endocr Disord; 2023 Jun; 23(1):129. PubMed ID: 37291551 [TBL] [Abstract][Full Text] [Related]
16. Application of a novel machine learning framework for predicting non-metastatic prostate cancer-specific mortality in men using the Surveillance, Epidemiology, and End Results (SEER) database. Lee C; Light A; Alaa A; Thurtle D; van der Schaar M; Gnanapragasam VJ Lancet Digit Health; 2021 Mar; 3(3):e158-e165. PubMed ID: 33549512 [TBL] [Abstract][Full Text] [Related]
17. Application of Machine Learning Models to Predict Recurrence After Surgical Resection of Nonmetastatic Renal Cell Carcinoma. Khene ZE; Bigot P; Doumerc N; Ouzaid I; Boissier R; Nouhaud FX; Albiges L; Bernhard JC; Ingels A; Borchiellini D; Kammerer-Jacquet S; Rioux-Leclercq N; Roupret M; Acosta O; De Crevoisier R; Bensalah K; Eur Urol Oncol; 2023 Jun; 6(3):323-330. PubMed ID: 35987730 [TBL] [Abstract][Full Text] [Related]
18. Machine learning-based prediction of 1-year mortality for acute coronary syndrome Hadanny A; Shouval R; Wu J; Gale CP; Unger R; Zahger D; Gottlieb S; Matetzky S; Goldenberg I; Beigel R; Iakobishvili Z J Cardiol; 2022 Mar; 79(3):342-351. PubMed ID: 34857429 [TBL] [Abstract][Full Text] [Related]
19. Deep learning model for predicting the survival of patients with primary gastrointestinal lymphoma based on the SEER database and a multicentre external validation cohort. Wang F; Chen L; Liu L; Jia Y; Li W; Wang L; Zhi J; Liu W; Li W; Li Z J Cancer Res Clin Oncol; 2023 Oct; 149(13):12177-12189. PubMed ID: 37428248 [TBL] [Abstract][Full Text] [Related]
20. Deep learning model for predicting postoperative survival of patients with gastric cancer. Zeng J; Song D; Li K; Cao F; Zheng Y Front Oncol; 2024; 14():1329983. PubMed ID: 38628668 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]