These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 34800941)

  • 1. Molecular dynamics simulation of metallic Al-Ce liquids using a neural network machine learning interatomic potential.
    Tang L; Ho KM; Wang CZ
    J Chem Phys; 2021 Nov; 155(19):194503. PubMed ID: 34800941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of interatomic potential for Al-Tb alloys using a deep neural network learning method.
    Tang L; Yang ZJ; Wen TQ; Ho KM; Kramer MJ; Wang CZ
    Phys Chem Chem Phys; 2020 Sep; 22(33):18467-18479. PubMed ID: 32778859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast and Accurate Artificial Neural Network Potential Model for MAPbI
    Chen HA; Pao CW
    ACS Omega; 2019 Jun; 4(6):10950-10959. PubMed ID: 31460193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep machine learning interatomic potential for liquid silica.
    Balyakin IA; Rempel SV; Ryltsev RE; Rempel AA
    Phys Rev E; 2020 Nov; 102(5-1):052125. PubMed ID: 33327164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic-Approach to Predict the Energetically Favored Composition Region and to Characterize the Short-, Medium-, and Extended-Range Structures of the Ti-Nb-Al Ternary Metallic Glasses.
    Cai B; Liu J; Li J; Yang M; Liu B
    Materials (Basel); 2019 Jan; 12(3):. PubMed ID: 30708955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substitutional alloy of Ce and Al.
    Zeng QS; Ding Y; Mao WL; Luo W; Blomqvist A; Ahuja R; Yang W; Shu J; Sinogeikin SV; Meng Y; Brewe DL; Jiang JZ; Mao HK
    Proc Natl Acad Sci U S A; 2009 Feb; 106(8):2515-8. PubMed ID: 19188608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Alloying Elements on the Short-Range Orders and Atomic Diffusion Behavior of Liquid Al-9Si Cast Alloys.
    Zhu X; Liu D; Wang J; Chen C; Li X; Wang L; Wang M
    Materials (Basel); 2023 Oct; 16(20):. PubMed ID: 37895750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Composition- and temperature-dependent liquid structures in Al-Cu alloys: an ab initio molecular dynamics and x-ray diffraction study.
    Xiong LH; Wang XD; Cao QP; Zhang DX; Xie HL; Xiao TQ; Jiang JZ
    J Phys Condens Matter; 2017 Jan; 29(3):035101. PubMed ID: 27849627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active learning prediction and experimental confirmation of atomic structure and thermophysical properties for liquid Hf_{76}W_{24} refractory alloy.
    Liu KL; Xiao RL; Ruan Y; Wei B
    Phys Rev E; 2023 Nov; 108(5-2):055310. PubMed ID: 38115461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ab initio molecular dynamics and high-dimensional neural network potential study of VZrNbHfTa melt.
    Balyakin IA; Yuryev AA; Gelchinski BR; Rempel AA
    J Phys Condens Matter; 2020 May; 32(21):214006. PubMed ID: 31978911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental and molecular dynamics simulation study of structure of liquid and amorphous Ni
    Zhang Y; Ashcraft R; Mendelev MI; Wang CZ; Kelton KF
    J Chem Phys; 2016 Nov; 145(20):204505. PubMed ID: 27908127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ab Initio Driven Exploration on the Thermal Properties of Al-Li Alloy.
    Chang X; Wu Y; Chu Q; Zhang G; Chen D
    ACS Appl Mater Interfaces; 2024 Mar; 16(12):14954-14964. PubMed ID: 38497105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning search for stable binary Sn alloys with Na, Ca, Cu, Pd, and Ag.
    Thorn A; Gochitashvili D; Kharabadze S; Kolmogorov AN
    Phys Chem Chem Phys; 2023 Aug; 25(33):22415-22436. PubMed ID: 37581211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of atomic structure in Al75Cu25 liquid from experimental and ab initio molecular dynamics simulation studies.
    Xiong LH; Yoo H; Lou HB; Wang XD; Cao QP; Zhang DX; Jiang JZ; Xie HL; Xiao TQ; Jeon S; Lee GW
    J Phys Condens Matter; 2015 Jan; 27(3):035102. PubMed ID: 25524926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient Molecular Dynamics Simulations of Deep Eutectic Solvents with First-Principles Accuracy Using Machine Learning Interatomic Potentials.
    Shayestehpour O; Zahn S
    J Chem Theory Comput; 2023 Dec; 19(23):8732-8742. PubMed ID: 37972596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation between the electronic structure, topologic structure and dynamic properties of liquid cerium.
    Sun X; Zhou R; Zhang B
    Phys Chem Chem Phys; 2017 Nov; 19(45):30498-30503. PubMed ID: 29115343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling LiF and FLiBe Molten Salts with Robust Neural Network Interatomic Potential.
    Lam ST; Li QJ; Ballinger R; Forsberg C; Li J
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):24582-24592. PubMed ID: 34019760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Dynamics Simulations of PtTi High-Temperature Shape Memory Alloys Based on a Modified Embedded-Atom Method Interatomic Potential.
    Lee JS; Chun YB; Ko WS
    Materials (Basel); 2022 Jul; 15(15):. PubMed ID: 35897541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Guidelines for creating artificial neural network empirical interatomic potential from first-principles molecular dynamics data under specific conditions and its application to α-Ag
    Shimamura K; Fukushima S; Koura A; Shimojo F; Misawa M; Kalia RK; Nakano A; Vashishta P; Matsubara T; Tanaka S
    J Chem Phys; 2019 Sep; 151(12):124303. PubMed ID: 31575208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast Crystallization of the Phase Change Compound GeTe by Large-Scale Molecular Dynamics Simulations.
    Sosso GC; Miceli G; Caravati S; Giberti F; Behler J; Bernasconi M
    J Phys Chem Lett; 2013 Dec; 4(24):4241-6. PubMed ID: 26296172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.