BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 34800946)

  • 1. Vibrational line shape effects in plasmon-enhanced stimulated Raman spectroscopies.
    Mandal A; Ziegler LD
    J Chem Phys; 2021 Nov; 155(19):194701. PubMed ID: 34800946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studying Stimulated Raman Activity in Surface-Enhanced Femtosecond Stimulated Raman Spectroscopy by Varying the Excitation Wavelength.
    Buchanan LE; McAnally MO; Gruenke NL; Schatz GC; Van Duyne RP
    J Phys Chem Lett; 2017 Jul; 8(14):3328-3333. PubMed ID: 28679047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupled wave equations theory of surface-enhanced femtosecond stimulated Raman scattering.
    McAnally MO; McMahon JM; Van Duyne RP; Schatz GC
    J Chem Phys; 2016 Sep; 145(9):094106. PubMed ID: 27608988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum theory of (femtosecond) time-resolved stimulated Raman scattering.
    Sun Z; Lu J; Zhang DH; Lee SY
    J Chem Phys; 2008 Apr; 128(14):144114. PubMed ID: 18412430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmon-enhanced coherent anti-stokes Raman scattering vs plasmon-enhanced stimulated Raman scattering: Comparison of line shape and enhancement factor.
    Zong C; Xie Y; Zhang M; Huang Y; Yang C; Cheng JX
    J Chem Phys; 2021 Jan; 154(3):034201. PubMed ID: 33499625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface-Enhanced Femtosecond Stimulated Raman Spectroscopy.
    Frontiera RR; Henry AI; Gruenke NL; Van Duyne RP
    J Phys Chem Lett; 2011 May; 2(10):1199-203. PubMed ID: 26295326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast vibrational imaging of single cells and tissues by stimulated Raman scattering microscopy.
    Zhang D; Wang P; Slipchenko MN; Cheng JX
    Acc Chem Res; 2014 Aug; 47(8):2282-90. PubMed ID: 24871269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dependence of line shapes in femtosecond broadband stimulated Raman spectroscopy on pump-probe time delay.
    Yoon S; McCamant DW; Kukura P; Mathies RA; Zhang D; Lee SY
    J Chem Phys; 2005 Jan; 122(2):024505. PubMed ID: 15638596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic Raman Line Shapes on an Evolving Excited-State Landscape: Insights from Tunable Femtosecond Stimulated Raman Spectroscopy.
    Oscar BG; Chen C; Liu W; Zhu L; Fang C
    J Phys Chem A; 2017 Jul; 121(29):5428-5441. PubMed ID: 28678500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localized surface plasmon resonances in nanostructures to enhance nonlinear vibrational spectroscopies: towards an astonishing molecular sensitivity.
    Lis D; Cecchet F
    Beilstein J Nanotechnol; 2014; 5():2275-92. PubMed ID: 25551056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Femtosecond stimulated Raman scattering picosecond molecular thermometry in condensed phases.
    Dang NC; Bolme CA; Moore DS; McGrane SD
    Phys Rev Lett; 2011 Jul; 107(4):043001. PubMed ID: 21866997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast surface-enhanced Raman spectroscopy.
    Keller EL; Brandt NC; Cassabaum AA; Frontiera RR
    Analyst; 2015 Aug; 140(15):4922-31. PubMed ID: 26016991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical analysis of anharmonic coupling and cascading Raman signals observed with femtosecond stimulated Raman spectroscopy.
    Mehlenbacher RD; Lyons B; Wilson KC; Du Y; McCamant DW
    J Chem Phys; 2009 Dec; 131(24):244512. PubMed ID: 20059084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative Determination of the Differential Raman Scattering Cross Sections of Glucose by Femtosecond Stimulated Raman Scattering.
    McAnally MO; Phelan BT; Young RM; Wasielewski MR; Schatz GC; Van Duyne RP
    Anal Chem; 2017 Jul; 89(13):6931-6935. PubMed ID: 28605893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum theory of time-resolved femtosecond stimulated Raman spectroscopy: direct versus cascade processes and application to CDCl3.
    Zhao B; Sun Z; Lee SY
    J Chem Phys; 2011 Jan; 134(2):024307. PubMed ID: 21241099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single fiber laser based wavelength tunable excitation for CRS spectroscopy.
    Su J; Xie R; Johnson CK; Hui R
    J Opt Soc Am B; 2013 Jun; 30(6):1671-1682. PubMed ID: 23950620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theory of femtosecond stimulated Raman spectroscopy.
    Lee SY; Zhang D; McCamant DW; Kukura P; Mathies RA
    J Chem Phys; 2004 Aug; 121(8):3632-42. PubMed ID: 15303930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of femtosecond stimulated Raman spectroscopy of excited-state evolution in bacteriorhodopsin.
    Niu K; Zhao B; Sun Z; Lee SY
    J Chem Phys; 2010 Feb; 132(8):084510. PubMed ID: 20192310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Femtosecond broadband stimulated Raman: a new approach for high-performance vibrational spectroscopy.
    McCamant DW; Kukura P; Mathies RA
    Appl Spectrosc; 2003 Nov; 57(11):1317-23. PubMed ID: 14658143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Femtosecond Time-Resolved Stimulated Raman Spectroscopy: Application to the Ultrafast Internal Conversion in beta-Carotene.
    McCamant DW; Kukura P; Mathies RA
    J Phys Chem A; 2003 Oct; 107(40):8208-14. PubMed ID: 16710440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.