These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 34800949)

  • 1. Improvement of the Gaussian Electrostatic Model by separate fitting of Coulomb and exchange-repulsion densities and implementation of a new dispersion term.
    Naseem-Khan S; Piquemal JP; Cisneros GA
    J Chem Phys; 2021 Nov; 155(19):194103. PubMed ID: 34800949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. S/G-1: an ab initio force-field blending frozen Hermite Gaussian densities and distributed multipoles. Proof of concept and first applications to metal cations.
    Chaudret R; Gresh N; Narth C; Lagardère L; Darden TA; Cisneros GA; Piquemal JP
    J Phys Chem A; 2014 Sep; 118(35):7598-612. PubMed ID: 24878003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards a force field based on density fitting.
    Piquemal JP; Cisneros GA; Reinhardt P; Gresh N; Darden TA
    J Chem Phys; 2006 Mar; 124(10):104101. PubMed ID: 16542062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. QM/MM Simulations with the Gaussian Electrostatic Model: A Density-based Polarizable Potential.
    Gökcan H; Kratz E; Darden TA; Piquemal JP; Cisneros GA
    J Phys Chem Lett; 2018 Jun; 9(11):3062-3067. PubMed ID: 29775314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generalization of the Gaussian electrostatic model: extension to arbitrary angular momentum, distributed multipoles, and speedup with reciprocal space methods.
    Cisneros GA; Piquemal JP; Darden TA
    J Chem Phys; 2006 Nov; 125(18):184101. PubMed ID: 17115732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of the Quantum-Inspired SIBFA Many-Body Polarizable Force Field: Enabling Condensed-Phase Molecular Dynamics Simulations.
    Naseem-Khan S; Lagardère L; Narth C; Cisneros GA; Ren P; Gresh N; Piquemal JP
    J Chem Theory Comput; 2022 Jun; 18(6):3607-3621. PubMed ID: 35575306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anisotropic, Polarizable Molecular Mechanics Studies of Inter- and Intramolecular Interactions and Ligand-Macromolecule Complexes. A Bottom-Up Strategy.
    Gresh N; Cisneros GA; Darden TA; Piquemal JP
    J Chem Theory Comput; 2007 Nov; 3(6):1960-1986. PubMed ID: 18978934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization and transferability of non-electrostatic repulsion in the polarizable density embedding model.
    Hršak D; Olsen JMH; Kongsted J
    J Comput Chem; 2017 Sep; 38(24):2108-2117. PubMed ID: 28643344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seamless integration of GEM, a density based-force field, for QM/MM simulations via LICHEM, Psi4, and Tinker-HP.
    Nochebuena J; Simmonett AC; Cisneros GA
    J Chem Phys; 2024 May; 160(17):. PubMed ID: 38747990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ewald-based methods for Gaussian integral evaluation: application to a new parameterization of GEM.
    Duke RE; Cisneros GA
    J Mol Model; 2019 Sep; 25(10):307. PubMed ID: 31501946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intermolecular electrostatic energies using density fitting.
    Cisneros GA; Piquemal JP; Darden TA
    J Chem Phys; 2005 Jul; 123(4):044109. PubMed ID: 16095348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cation-π interactions: accurate intermolecular potential from symmetry-adapted perturbation theory.
    Ansorg K; Tafipolsky M; Engels B
    J Phys Chem B; 2013 Sep; 117(35):10093-102. PubMed ID: 23924321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Representation of Zn(II) complexes in polarizable molecular mechanics. Further refinements of the electrostatic and short-range contributions. Comparisons with parallel ab initio computations.
    Gresh N; Piquemal JP; Krauss M
    J Comput Chem; 2005 Aug; 26(11):1113-30. PubMed ID: 15934064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exchange-repulsion energy in QM/EFP.
    Viquez Rojas CI; Fine J; Slipchenko LV
    J Chem Phys; 2018 Sep; 149(9):094103. PubMed ID: 30195305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Accurate Quantum-Based Approach to Explicit Solvent Effects: Interfacing the General Effective Fragment Potential Method with
    Sattasathuchana T; Xu P; Gordon MS
    J Phys Chem A; 2019 Oct; 123(39):8460-8475. PubMed ID: 31365250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of Gaussian Electrostatic Model (GEM) Distributed Multipoles in the AMOEBA Force Field.
    Cisneros GA
    J Chem Theory Comput; 2012 Dec; 8(12):5072-80. PubMed ID: 26593198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparing polarizable force fields to ab initio calculations reveals nonclassical effects in condensed phases.
    Chelli R; Schettino V; Procacci P
    J Chem Phys; 2005 Jun; 122(23):234107. PubMed ID: 16008430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A self-consistent coulomb bath model using density fitting.
    Chen X; Qu Z; Suo B; Gao J
    J Comput Chem; 2020 Jul; 41(18):1698-1708. PubMed ID: 32369627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. C-GeM: Coarse-Grained Electron Model for Predicting the Electrostatic Potential in Molecules.
    Leven I; Head-Gordon T
    J Phys Chem Lett; 2019 Nov; 10(21):6820-6826. PubMed ID: 31613629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intermolecular coulomb couplings from ab initio electrostatic potentials: application to optical transitions of strongly coupled pigments in photosynthetic antennae and reaction centers.
    Madjet ME; Abdurahman A; Renger T
    J Phys Chem B; 2006 Aug; 110(34):17268-81. PubMed ID: 16928026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.