These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 34801079)

  • 1. When metabolic prowess is too much of a good thing: how carbon catabolite repression and metabolic versatility impede production of esterified α,ω-diols in Pseudomonas putida KT2440.
    Lu C; Batianis C; Akwafo EO; Wijffels RH; Martins Dos Santos VAP; Weusthuis RA
    Biotechnol Biofuels; 2021 Nov; 14(1):218. PubMed ID: 34801079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial production of medium-chain-length α, ω-diols via two-stage process under mild conditions.
    Lu C; Leitner N; Wijffels RH; Martins Dos Santos VAP; Weusthuis RA
    Bioresour Technol; 2022 May; 352():127111. PubMed ID: 35381336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eliminating a global regulator of carbon catabolite repression enhances the conversion of aromatic lignin monomers to muconate in
    Johnson CW; Abraham PE; Linger JG; Khanna P; Hettich RL; Beckham GT
    Metab Eng Commun; 2017 Dec; 5():19-25. PubMed ID: 29188181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crossing bacterial boundaries: The carbon catabolite repression system Crc-Hfq of Pseudomonas putida KT2440 as a tool to control translation in E. coli.
    Lu C; Ramalho TP; Bisschops MMM; Wijffels RH; Martins Dos Santos VAP; Weusthuis RA
    N Biotechnol; 2023 Nov; 77():20-29. PubMed ID: 37348756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of Pseudomonas putida KT2440 for medium-chain-length fatty alcohol and ester production from fatty acids.
    Lu C; Akwafo EO; Wijffels RH; Martins Dos Santos VAP; Weusthuis RA
    Metab Eng; 2023 Jan; 75():110-118. PubMed ID: 36494025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous carbon catabolite repression governs sugar and aromatic co-utilization in
    Shrestha S; Awasthi D; Chen Y; Gin J; Petzold CJ; Adams PD; Simmons BA; Singer SW
    Appl Environ Microbiol; 2023 Oct; 89(10):e0085223. PubMed ID: 37724856
    [No Abstract]   [Full Text] [Related]  

  • 7. Production of medium chain length polyhydroxyalkanoate from acetate by engineered Pseudomonas putida KT2440.
    Yang S; Li S; Jia X
    J Ind Microbiol Biotechnol; 2019 Jun; 46(6):793-800. PubMed ID: 30864026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pseudomonas putida as a platform for medium-chain length α,ω-diol production: Opportunities and challenges.
    Lu C; Wijffels RH; Martins Dos Santos VAP; Weusthuis RA
    Microb Biotechnol; 2024 Mar; 17(3):e14423. PubMed ID: 38528784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biocatalytic, one-pot diterminal oxidation and esterification of n-alkanes for production of α,ω-diol and α,ω-dicarboxylic acid esters.
    van Nuland YM; de Vogel FA; Scott EL; Eggink G; Weusthuis RA
    Metab Eng; 2017 Nov; 44():134-142. PubMed ID: 28993212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of AlkBGT and AlkL from Pseudomonas putida GPo1 for Selective Alkyl Ester ω-Oxyfunctionalization in Escherichia coli.
    van Nuland YM; Eggink G; Weusthuis RA
    Appl Environ Microbiol; 2016 Jul; 82(13):3801-3807. PubMed ID: 27084021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the crc gene in catabolic repression of the Pseudomonas putida GPo1 alkane degradation pathway.
    Yuste L; Rojo F
    J Bacteriol; 2001 Nov; 183(21):6197-206. PubMed ID: 11591662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The PalkBFGHJKL promoter is under carbon catabolite repression control in Pseudomonas oleovorans but not in Escherichia coli alk+ recombinants.
    Staijen IE; Marcionelli R; Witholt B
    J Bacteriol; 1999 Mar; 181(5):1610-6. PubMed ID: 10049394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Crc and Hfq proteins of Pseudomonas putida cooperate in catabolite repression and formation of ribonucleic acid complexes with specific target motifs.
    Moreno R; Hernández-Arranz S; La Rosa R; Yuste L; Madhushani A; Shingler V; Rojo F
    Environ Microbiol; 2015 Jan; 17(1):105-18. PubMed ID: 24803210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catabolite repression control protein antagonist, a novel player in
    Sonnleitner E; Bassani F; Cianciulli Sesso A; Brear P; Lilic B; Davidovski L; Resch A; Luisi BF; Moll I; Bläsi U
    Front Microbiol; 2023; 14():1195558. PubMed ID: 37250041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two small RNAs, CrcY and CrcZ, act in concert to sequester the Crc global regulator in Pseudomonas putida, modulating catabolite repression.
    Moreno R; Fonseca P; Rojo F
    Mol Microbiol; 2012 Jan; 83(1):24-40. PubMed ID: 22053874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inactivation of cytochrome o ubiquinol oxidase relieves catabolic repression of the Pseudomonas putida GPo1 alkane degradation pathway.
    Dinamarca MA; Ruiz-Manzano A; Rojo F
    J Bacteriol; 2002 Jul; 184(14):3785-93. PubMed ID: 12081947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bio-upcycling of even and uneven medium-chain-length diols and dicarboxylates to polyhydroxyalkanoates using engineered Pseudomonas putida.
    Ackermann YS; de Witt J; Mezzina MP; Schroth C; Polen T; Nikel PI; Wynands B; Wierckx N
    Microb Cell Fact; 2024 Feb; 23(1):54. PubMed ID: 38365718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crc is involved in catabolite repression control of the bkd operons of Pseudomonas putida and Pseudomonas aeruginosa.
    Hester KL; Lehman J; Najar F; Song L; Roe BA; MacGregor CH; Hager PW; Phibbs PV; Sokatch JR
    J Bacteriol; 2000 Feb; 182(4):1144-9. PubMed ID: 10648542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A reduction in growth rate of Pseudomonas putida KT2442 counteracts productivity advances in medium-chain-length polyhydroxyalkanoate production from gluconate.
    Follonier S; Panke S; Zinn M
    Microb Cell Fact; 2011 Apr; 10():25. PubMed ID: 21513516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combination of ester biosynthesis and ω-oxidation for production of mono-ethyl dicarboxylic acids and di-ethyl esters in a whole-cell biocatalytic setup with Escherichia coli.
    van Nuland YM; Eggink G; Weusthuis RA
    Microb Cell Fact; 2017 Nov; 16(1):185. PubMed ID: 29096635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.