These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 34801079)
21. Expansion of the ω-oxidation system AlkBGTL of Pseudomonas putida GPo1 with AlkJ and AlkH results in exclusive mono-esterified dicarboxylic acid production in E. coli. van Nuland YM; de Vogel FA; Eggink G; Weusthuis RA Microb Biotechnol; 2017 May; 10(3):594-603. PubMed ID: 28321989 [TBL] [Abstract][Full Text] [Related]
22. The translational repressor Crc controls the Pseudomonas putida benzoate and alkane catabolic pathways using a multi-tier regulation strategy. Hernández-Arranz S; Moreno R; Rojo F Environ Microbiol; 2013 Jan; 15(1):227-41. PubMed ID: 22925411 [TBL] [Abstract][Full Text] [Related]
23. Production of medium-chain-length polyhydroxyalkanoates by sequential feeding of xylose and octanoic acid in engineered Pseudomonas putida KT2440. Le Meur S; Zinn M; Egli T; Thöny-Meyer L; Ren Q BMC Biotechnol; 2012 Aug; 12():53. PubMed ID: 22913372 [TBL] [Abstract][Full Text] [Related]
24. Integrated analysis of gene expression and metabolic fluxes in PHA-producing Pseudomonas putida grown on glycerol. Beckers V; Poblete-Castro I; Tomasch J; Wittmann C Microb Cell Fact; 2016 May; 15():73. PubMed ID: 27142075 [TBL] [Abstract][Full Text] [Related]
25. Influence of the Hfq and Crc global regulators on the control of iron homeostasis in Pseudomonas putida. Sánchez-Hevia DL; Yuste L; Moreno R; Rojo F Environ Microbiol; 2018 Oct; 20(10):3484-3503. PubMed ID: 29708644 [TBL] [Abstract][Full Text] [Related]
26. Regulatory exaptation of the catabolite repression protein (Crp)-cAMP system in Pseudomonas putida. Milanesio P; Arce-Rodríguez A; Muñoz A; Calles B; de Lorenzo V Environ Microbiol; 2011 Feb; 13(2):324-39. PubMed ID: 21281420 [TBL] [Abstract][Full Text] [Related]
27. Degradation of alkyl methyl ketones by Pseudomonas veronii MEK700. Onaca C; Kieninger M; Engesser KH; Altenbuchner J J Bacteriol; 2007 May; 189(10):3759-67. PubMed ID: 17351032 [TBL] [Abstract][Full Text] [Related]
28. The Crc/CrcZ-CrcY global regulatory system helps the integration of gluconeogenic and glycolytic metabolism in Pseudomonas putida. La Rosa R; Nogales J; Rojo F Environ Microbiol; 2015 Sep; 17(9):3362-78. PubMed ID: 25711694 [TBL] [Abstract][Full Text] [Related]
29. Multiple Hfq-Crc target sites are required to impose catabolite repression on (methyl)phenol metabolism in Pseudomonas putida CF600. Wirebrand L; Madhushani AWK; Irie Y; Shingler V Environ Microbiol; 2018 Jan; 20(1):186-199. PubMed ID: 29076626 [TBL] [Abstract][Full Text] [Related]
30. A 2D-DIGE-based proteomic analysis brings new insights into cellular responses of Pseudomonas putida KT2440 during polyhydroxyalkanoates synthesis. Możejko-Ciesielska J; Mostek A Microb Cell Fact; 2019 May; 18(1):93. PubMed ID: 31138236 [TBL] [Abstract][Full Text] [Related]
31. Influence of the Crc regulator on the hierarchical use of carbon sources from a complete medium in Pseudomonas. La Rosa R; Behrends V; Williams HD; Bundy JG; Rojo F Environ Microbiol; 2016 Mar; 18(3):807-18. PubMed ID: 26568055 [TBL] [Abstract][Full Text] [Related]
32. Reaction and catalyst engineering to exploit kinetically controlled whole-cell multistep biocatalysis for terminal FAME oxyfunctionalization. Schrewe M; Julsing MK; Lange K; Czarnotta E; Schmid A; Bühler B Biotechnol Bioeng; 2014 Sep; 111(9):1820-30. PubMed ID: 24852702 [TBL] [Abstract][Full Text] [Related]
33. Integration of signals through Crc and PtsN in catabolite repression of Pseudomonas putida TOL plasmid pWW0. Aranda-Olmedo I; Ramos JL; Marqués S Appl Environ Microbiol; 2005 Aug; 71(8):4191-8. PubMed ID: 16085802 [TBL] [Abstract][Full Text] [Related]
34. Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440. Wittgens A; Tiso T; Arndt TT; Wenk P; Hemmerich J; Müller C; Wichmann R; Küpper B; Zwick M; Wilhelm S; Hausmann R; Syldatk C; Rosenau F; Blank LM Microb Cell Fact; 2011 Oct; 10():80. PubMed ID: 21999513 [TBL] [Abstract][Full Text] [Related]
35. Preliminary study on the effect of catabolite repression gene knockout on p-nitrophenol degradation in Pseudomonas putida DLL-E4. Li S; Tang Y; Tang L; Yan X; Xiao J; Xiang H; Wu Q; Yu R; Jin Y; Yu J; Xu N; Wu C; Wang S; Wang C; Chen Q PLoS One; 2022; 17(12):e0278503. PubMed ID: 36459525 [TBL] [Abstract][Full Text] [Related]
36. Construction of a "nutrition supply-detoxification" coculture consortium for medium-chain-length polyhydroxyalkanoate production with a glucose-xylose mixture. Liu Y; Yang S; Jia X J Ind Microbiol Biotechnol; 2020 Mar; 47(3):343-354. PubMed ID: 32140930 [TBL] [Abstract][Full Text] [Related]
37. Pseudomonas putida growing at low temperature shows increased levels of CrcZ and CrcY sRNAs, leading to reduced Crc-dependent catabolite repression. Fonseca P; Moreno R; Rojo F Environ Microbiol; 2013 Jan; 15(1):24-35. PubMed ID: 22360597 [TBL] [Abstract][Full Text] [Related]
39. Effect of Crc and Hfq proteins on the transcription, processing, and stability of the Pseudomonas putida CrcZ sRNA. Hernández-Arranz S; Sánchez-Hevia D; Rojo F; Moreno R RNA; 2016 Dec; 22(12):1902-1917. PubMed ID: 27777366 [TBL] [Abstract][Full Text] [Related]