These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 34801311)

  • 1. Extracellular proteins of Desulfovibrio vulgaris as adsorbents and redox shuttles promote biomineralization of antimony.
    Yu H; Yan X; Weng W; Xu S; Xu G; Gu T; Guan X; Liu S; Chen P; Wu Y; Xiao F; Wang C; Shu L; Wu B; Qiu D; He Z; Yan Q
    J Hazard Mater; 2022 Mar; 426():127795. PubMed ID: 34801311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stibnite dissolution and Sb oxidation by Paraccocus versutus XT0.6 via direct and indirect contact.
    Li M; Wang W; Wu M; Lei J; Lu X; Wang H
    J Hazard Mater; 2024 Apr; 467():133731. PubMed ID: 38340562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of Antimony in Wastewater by Antimony Tolerant Sulfate-Reducing Bacteria Isolated from Municipal Sludge.
    Li H; Fei Y; Xue S; Zhang G; Bian Z; Guo F; Wang L; Chai R; Zhang S; Cui Z; Wang S; Zhang J
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antimony transformation and mobilization from stibnite by an antimonite oxidizing bacterium Bosea sp. AS-1.
    Xiang L; Liu C; Liu D; Ma L; Qiu X; Wang H; Lu X
    J Environ Sci (China); 2022 Jan; 111():273-281. PubMed ID: 34949357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of bacterial dissimilatory antimonate reductase AnrA: genes and proteins involved in antimonate respiration and resistance in
    Kambara R; Yamamura S; Amachi S
    Appl Environ Microbiol; 2024 Mar; 90(3):e0172923. PubMed ID: 38411083
    [No Abstract]   [Full Text] [Related]  

  • 6. Removal of antimony (Sb(V)) from Sb mine drainage: biological sulfate reduction and sulfide oxidation-precipitation.
    Wang H; Chen F; Mu S; Zhang D; Pan X; Lee DJ; Chang JS
    Bioresour Technol; 2013 Oct; 146():799-802. PubMed ID: 23993285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene expression analysis of the mechanism of inhibition of Desulfovibrio vulgaris Hildenborough by nitrate-reducing, sulfide-oxidizing bacteria.
    Haveman SA; Greene EA; Voordouw G
    Environ Microbiol; 2005 Sep; 7(9):1461-5. PubMed ID: 16104868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental evolution reveals nitrate tolerance mechanisms in Desulfovibrio vulgaris.
    Wu B; Liu F; Zhou A; Li J; Shu L; Kempher ML; Yang X; Ning D; Pan F; Zane GM; Wall JD; Van Nostrand JD; Juneau P; Chen S; Yan Q; Zhou J; He Z
    ISME J; 2020 Nov; 14(11):2862-2876. PubMed ID: 32934357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reaction pathways and Sb(III) minerals formation during the reduction of Sb(V) by Rhodoferax ferrireducens strain YZ-1.
    Zhang Y; Boyanov MI; O'Loughlin EJ; Kemner KM; Sanford RA; Kim HS; Park SC; Kwon MJ
    J Hazard Mater; 2024 Mar; 465():133240. PubMed ID: 38134691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Key Metabolites and Mechanistic Changes for Salt Tolerance in an Experimentally Evolved Sulfate-Reducing Bacterium,
    Zhou A; Lau R; Baran R; Ma J; von Netzer F; Shi W; Gorman-Lewis D; Kempher ML; He Z; Qin Y; Shi Z; Zane GM; Wu L; Bowen BP; Northen TR; Hillesland KL; Stahl DA; Wall JD; Arkin AP; Zhou J
    mBio; 2017 Nov; 8(6):. PubMed ID: 29138306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DsrC is involved in fermentative growth and interacts directly with the FlxABCD-HdrABC complex in Desulfovibrio vulgaris Hildenborough.
    Ferreira D; Venceslau SS; Bernardino R; Preto A; Zhang L; Waldbauer JR; Leavitt WD; Pereira IAC
    Environ Microbiol; 2023 May; 25(5):962-976. PubMed ID: 36602077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Community ecological study on the reduction of soil antimony bioavailability by SRB-based remediation technologies.
    Zhang M; Xiong J; Zhou L; Li J; Fan J; Li X; Zhang T; Yin Z; Yin H; Liu X; Meng D
    J Hazard Mater; 2023 Oct; 459():132256. PubMed ID: 37567138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antimony Redox Biotransformation in the Subsurface: Effect of Indigenous Sb(V) Respiring Microbiota.
    Wang L; Ye L; Yu Y; Jing C
    Environ Sci Technol; 2018 Feb; 52(3):1200-1207. PubMed ID: 29313683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DcrA, a c-type heme-containing methyl-accepting protein from Desulfovibrio vulgaris Hildenborough, senses the oxygen concentration or redox potential of the environment.
    Fu R; Wall JD; Voordouw G
    J Bacteriol; 1994 Jan; 176(2):344-50. PubMed ID: 8288528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of microbial dissolution and oxidation of antimony in stibnite under ambient conditions.
    Loni PC; Wu M; Wang W; Wang H; Ma L; Liu C; Song Y; H Tuovinen O
    J Hazard Mater; 2020 Mar; 385():121561. PubMed ID: 31740307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of antimony biogeochemical processes under pre-definite anaerobic and aerobic conditions in a paddy soil.
    Xia B; Yang Y; Li F; Liu T
    J Environ Sci (China); 2022 Mar; 113():269-280. PubMed ID: 34963536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of two morphologically different antimony trioxides by a novel antimonate-reducing bacterium, Geobacter sp. SVR.
    Yamamura S; Iida C; Kobayashi Y; Watanabe M; Amachi S
    J Hazard Mater; 2021 Jun; 411():125100. PubMed ID: 33486228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Post-translational modifications of Desulfovibrio vulgaris Hildenborough sulfate reduction pathway proteins.
    Gaucher SP; Redding AM; Mukhopadhyay A; Keasling JD; Singh AK
    J Proteome Res; 2008 Jun; 7(6):2320-31. PubMed ID: 18416566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic study of antimonate reduction by Escherichia coli W3110.
    Zhang L; Ye L; Yin Z; Xiao K; Jing C
    Environ Pollut; 2021 Dec; 291():118258. PubMed ID: 34606969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impacts of Redox Conditions on Arsenic and Antimony Transformation in Paddy Soil: Kinetics and Functional Bacteria.
    Xia B; Yang Y; Wu Y; Li X; Li F; Liu T
    Bull Environ Contam Toxicol; 2021 Dec; 107(6):1121-1127. PubMed ID: 33904944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.