BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 34801548)

  • 1. Development of a versatile HPLC-based method to evaluate the activation status of small GTPases.
    Araki M; Yoshimoto K; Ohta M; Katada T; Kontani K
    J Biol Chem; 2021 Dec; 297(6):101428. PubMed ID: 34801548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis for the unique biological function of small GTPase RHEB.
    Yu Y; Li S; Xu X; Li Y; Guan K; Arnold E; Ding J
    J Biol Chem; 2005 Apr; 280(17):17093-100. PubMed ID: 15728574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amino Acid-Mediated Intracellular Ca
    Amemiya Y; Nakamura N; Ikeda N; Sugiyama R; Ishii C; Maki M; Shibata H; Takahara T
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34198993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of the TSC2 GAP Domain: Mechanistic Insight into Catalysis and Pathogenic Mutations.
    Hansmann P; Brückner A; Kiontke S; Berkenfeld B; Seebohm G; Brouillard P; Vikkula M; Jansen FE; Nellist M; Oeckinghaus A; Kümmel D
    Structure; 2020 Aug; 28(8):933-942.e4. PubMed ID: 32502382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NMR analysis of the backbone dynamics of the small GTPase Rheb and its interaction with the regulatory protein FKBP38.
    De Cicco M; Kiss L; Dames SA
    FEBS Lett; 2018 Jan; 592(1):130-146. PubMed ID: 29194576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperactivation of mammalian target of rapamycin (mTOR) signaling by a gain-of-function mutant of the Rheb GTPase.
    Yan L; Findlay GM; Jones R; Procter J; Cao Y; Lamb RF
    J Biol Chem; 2006 Jul; 281(29):19793-7. PubMed ID: 16728407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. To cease or to proliferate: new insights into TCTP function from a Drosophila study.
    Choi KW; Hsu YC
    Cell Adh Migr; 2007; 1(3):129-30. PubMed ID: 19262129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The tuberous sclerosis protein TSC2 is not required for the regulation of the mammalian target of rapamycin by amino acids and certain cellular stresses.
    Smith EM; Finn SG; Tee AR; Browne GJ; Proud CG
    J Biol Chem; 2005 May; 280(19):18717-27. PubMed ID: 15772076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-guided mutation of the conserved G3-box glycine in Rheb generates a constitutively activated regulator of mammalian target of rapamycin (mTOR).
    Mazhab-Jafari MT; Marshall CB; Ho J; Ishiyama N; Stambolic V; Ikura M
    J Biol Chem; 2014 May; 289(18):12195-201. PubMed ID: 24648513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport to Rhebpress activity.
    Garrido A; Brandt M; Djouder N
    Small GTPases; 2016; 7(1):12-5. PubMed ID: 26735067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amino acid regulation of TOR complex 1.
    Avruch J; Long X; Ortiz-Vega S; Rapley J; Papageorgiou A; Dai N
    Am J Physiol Endocrinol Metab; 2009 Apr; 296(4):E592-602. PubMed ID: 18765678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constitutively active Rheb mutants [T23M] and [E40K] drive increased production and secretion of recombinant protein in Chinese hamster ovary cells.
    De Poi SP; Xie J; Smales CM; Proud CG
    Biotechnol Bioeng; 2021 Jul; 118(7):2422-2434. PubMed ID: 33694218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The small GTPases Ras and Rheb studied by multidimensional NMR spectroscopy: structure and function.
    Schöpel M; Potheraveedu VN; Al-Harthy T; Abdel-Jalil R; Heumann R; Stoll R
    Biol Chem; 2017 May; 398(5-6):577-588. PubMed ID: 28475102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational resolution of nucleotide cycling and effector interactions for multiple small GTPases determined in parallel.
    Killoran RC; Smith MJ
    J Biol Chem; 2019 Jun; 294(25):9937-9948. PubMed ID: 31088913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ral and Rheb GTPase activating proteins integrate mTOR and GTPase signaling in aging, autophagy, and tumor cell invasion.
    Martin TD; Chen XW; Kaplan RE; Saltiel AR; Walker CL; Reiner DJ; Der CJ
    Mol Cell; 2014 Jan; 53(2):209-20. PubMed ID: 24389102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurements of TSC2 GAP activity toward Rheb.
    Li Y; Inoki K; Vikis H; Guan KL
    Methods Enzymol; 2006; 407():46-54. PubMed ID: 16757313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RhoA modulates signaling through the mechanistic target of rapamycin complex 1 (mTORC1) in mammalian cells.
    Gordon BS; Kazi AA; Coleman CS; Dennis MD; Chau V; Jefferson LS; Kimball SR
    Cell Signal; 2014 Mar; 26(3):461-7. PubMed ID: 24316235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time NMR study of three small GTPases reveals that fluorescent 2'(3')-O-(N-methylanthraniloyl)-tagged nucleotides alter hydrolysis and exchange kinetics.
    Mazhab-Jafari MT; Marshall CB; Smith M; Gasmi-Seabrook GM; Stambolic V; Rottapel R; Neel BG; Ikura M
    J Biol Chem; 2010 Feb; 285(8):5132-6. PubMed ID: 20018863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamin-dependent amino acid endocytosis activates mechanistic target of rapamycin complex 1 (mTORC1).
    Shibutani S; Okazaki H; Iwata H
    J Biol Chem; 2017 Nov; 292(44):18052-18061. PubMed ID: 28808055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The switch I region of Rheb is critical for its interaction with FKBP38.
    Ma D; Bai X; Guo S; Jiang Y
    J Biol Chem; 2008 Sep; 283(38):25963-70. PubMed ID: 18658153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.