These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 34801718)
1. Analysis of the characteristics of paulownia lignocellulose and hydrogen production potential via photo fermentation. Zhang Q; Jin P; Li Y; Zhang Z; Zhang H; Ru G; Jiang D; Jing Y; Zhang X Bioresour Technol; 2022 Jan; 344(Pt B):126361. PubMed ID: 34801718 [TBL] [Abstract][Full Text] [Related]
2. Enhancing biohydrogen production from lignocellulosic biomass of Paulownia waste by charge facilitation in Zn doped SnO Tahir N; Nadeem F; Jabeen F; Rani Singhania R; Yaqub Qazi U; Kumar Patel A; Javaid R; Zhang Q Bioresour Technol; 2022 Jul; 355():127299. PubMed ID: 35562020 [TBL] [Abstract][Full Text] [Related]
3. Renewable biohydrogen production from lignocellulosic biomass using fermentation and integration of systems with other energy generation technologies. Bhatia SK; Jagtap SS; Bedekar AA; Bhatia RK; Rajendran K; Pugazhendhi A; Rao CV; Atabani AE; Kumar G; Yang YH Sci Total Environ; 2021 Apr; 765():144429. PubMed ID: 33385808 [TBL] [Abstract][Full Text] [Related]
4. Biohydrogen production from dairy manures with acidification pretreatment by anaerobic fermentation. Xing Y; Li Z; Fan Y; Hou H Environ Sci Pollut Res Int; 2010 Feb; 17(2):392-9. PubMed ID: 19499259 [TBL] [Abstract][Full Text] [Related]
5. Biohydrogen production through active saccharification and photo-fermentation from alfalfa. Lu C; Jing Y; Zhang H; Lee DJ; Tahir N; Zhang Q; Li W; Wang Y; Liang X; Wang J; Jin P; Zhang X Bioresour Technol; 2020 May; 304():123007. PubMed ID: 32070841 [TBL] [Abstract][Full Text] [Related]
7. Photo-fermentative biohydrogen production from corncob treated by microwave irradiation. Zhang Z; Fan X; Li Y; Jin P; Jiao Y; Ai F; Zhang H; Zhang Q Bioresour Technol; 2021 Nov; 340():125460. PubMed ID: 34352643 [TBL] [Abstract][Full Text] [Related]
8. Pretreatment of Arundo donax L. for photo-fermentative biohydrogen production by ultrasonication and ionic liquid. Zhang Q; Yang J; Zhang T; Shui X; Zhang H; Chen Z; He X; Lei T; Jiang D; Elgorban AM; Syed A; Kumar Solanki M Bioresour Technol; 2023 Jun; 377():128904. PubMed ID: 36933572 [TBL] [Abstract][Full Text] [Related]
9. Palm oil industrial wastes as a promising feedstock for biohydrogen production: A comprehensive review. Ong ES; Rabbani AH; Habashy MM; Abdeldayem OM; Al-Sakkari EG; Rene ER Environ Pollut; 2021 Dec; 291():118160. PubMed ID: 34562690 [TBL] [Abstract][Full Text] [Related]
10. Processing of Biomass Prior to Hydrogen Fermentation and Post-Fermentative Broth Management. Honarmandrad Z; Kucharska K; Gębicki J Molecules; 2022 Nov; 27(21):. PubMed ID: 36364485 [TBL] [Abstract][Full Text] [Related]
11. Co-production process optimization and carbon footprint analysis of biohydrogen and biofertilizer from corncob by photo-fermentation. Zhang Z; Ai F; Li Y; Zhu S; Wu Q; Duan Z; Liu H; Qian L; Zhang Q; Zhang Y Bioresour Technol; 2023 May; 375():128814. PubMed ID: 36868428 [TBL] [Abstract][Full Text] [Related]
12. Effect of alkaline pretreatment on photo-fermentative hydrogen production from giant reed: Comparison of NaOH and Ca(OH) Jiang D; Ge X; Zhang T; Chen Z; Zhang Z; He C; Zhang Q; Li Y Bioresour Technol; 2020 May; 304():123001. PubMed ID: 32088626 [TBL] [Abstract][Full Text] [Related]
13. Enhanced biohydrogen yield and light conversion efficiency during photo-fermentation using immobilized photo-catalytic nano-particles. Zhang Z; Fan X; Li D; Li Y; Zhang Q; Duan Z; Yang G; Zhu S; Zhang H; Yue J Bioresour Technol; 2023 Jun; 377():128931. PubMed ID: 36940883 [TBL] [Abstract][Full Text] [Related]
15. Effect of enzymolysis time on biohydrogen production from photo-fermentation by using various energy grasses as substrates. Zhang Y; Zhang H; Lee DJ; Zhang T; Jiang D; Zhang Z; Zhang Q Bioresour Technol; 2020 Jun; 305():123062. PubMed ID: 32109731 [TBL] [Abstract][Full Text] [Related]
16. Advances in the catalyzed photo-fermentative biohydrogen production through photo nanocatalysts with the potential of selectivity, and customization. Nadeem F; Zhang H; Tahir N; Zhang Z; Rani Singhania R; Shahzaib M; Ramzan H; Usman M; Ur Rahman M; Zhang Q Bioresour Technol; 2023 Aug; 382():129221. PubMed ID: 37217146 [TBL] [Abstract][Full Text] [Related]
17. Effect of total solids content on biohydrogen production and lactic acid accumulation during dark fermentation of organic waste biomass. Ghimire A; Trably E; Frunzo L; Pirozzi F; Lens PNL; Esposito G; Cazier EA; Escudié R Bioresour Technol; 2018 Jan; 248(Pt A):180-186. PubMed ID: 28764910 [TBL] [Abstract][Full Text] [Related]
18. Simultaneous biohydrogen production from dark fermentation of duckweed and waste utilization for microalgal lipid production. Mu D; Liu H; Lin W; Shukla P; Luo J Bioresour Technol; 2020 Apr; 302():122879. PubMed ID: 32028148 [TBL] [Abstract][Full Text] [Related]
19. Microalgal upgrading of the fermentative biohydrogen produced from Bacillus coagulans via non-pretreated plant biomass. Aldaby ESE; Mahmoud AHA; El-Bery HM; Ali MM; Shoreit AA; Mawad AMM Microb Cell Fact; 2023 Sep; 22(1):190. PubMed ID: 37730554 [TBL] [Abstract][Full Text] [Related]
20. Fermentative hydrogen production from low-value substrates. Hassan AHS; Mietzel T; Brunstermann R; Schmuck S; Schoth J; Küppers M; Widmann R World J Microbiol Biotechnol; 2018 Nov; 34(12):176. PubMed ID: 30446833 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]