These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 34801956)
21. Spark Plasma Sintering As a Solid-State Recycling Technique: The Case of Aluminum Alloy Scrap Consolidation. Paraskevas D; Vanmeensel K; Vleugels J; Dewulf W; Deng Y; Duflou JR Materials (Basel); 2014 Aug; 7(8):5664-5687. PubMed ID: 28788153 [TBL] [Abstract][Full Text] [Related]
22. Sustainable valorization of semiconductor industry tantalum scrap using non-hazardous HF substitute lixiviant. Swain B; Lee J; Woo Gu B; Lee CG; Yoon JH Waste Manag; 2022 May; 144():294-302. PubMed ID: 35427901 [TBL] [Abstract][Full Text] [Related]
23. An economic analysis of scrap tire pyrolysis, potential and new opportunities. Goksal FP Heliyon; 2022 Nov; 8(11):e11669. PubMed ID: 36419657 [TBL] [Abstract][Full Text] [Related]
24. Forecasting model to assess the potential of secondary lead production from lead acid battery scrap. Machado Santos S; Cabral Neto J; Mendonça Silva M Environ Sci Pollut Res Int; 2019 Feb; 26(6):5782-5793. PubMed ID: 30613889 [TBL] [Abstract][Full Text] [Related]
25. Recycling of metals: accounting of greenhouse gases and global warming contributions. Damgaard A; Larsen AW; Christensen TH Waste Manag Res; 2009 Nov; 27(8):773-80. PubMed ID: 19767324 [TBL] [Abstract][Full Text] [Related]
26. Optimal Recycling of Steel Scrap and Alloying Elements: Input-Output based Linear Programming Method with Its Application to End-of-Life Vehicles in Japan. Ohno H; Matsubae K; Nakajima K; Kondo Y; Nakamura S; Fukushima Y; Nagasaka T Environ Sci Technol; 2017 Nov; 51(22):13086-13094. PubMed ID: 29111691 [TBL] [Abstract][Full Text] [Related]
27. Simultaneous material flow analysis of nickel, chromium, and molybdenum used in alloy steel by means of input-output analysis. Nakajima K; Ohno H; Kondo Y; Matsubae K; Takeda O; Miki T; Nakamura S; Nagasaka T Environ Sci Technol; 2013 May; 47(9):4653-60. PubMed ID: 23528100 [TBL] [Abstract][Full Text] [Related]
28. Recycling of aluminium laminated pouches and Tetra Pak cartons by molten metal pyrolysis - Pilot-scale experiments and economic analysis. Riedewald F; Wilson E; Patel Y; Vogt D; Povey I; Barton K; Lewis L; Caris T; Santos S; O'Mahoney M; Sousa-Gallagher M Waste Manag; 2022 Feb; 138():172-179. PubMed ID: 34896737 [TBL] [Abstract][Full Text] [Related]
29. Aluminium salt slag characterization and utilization--a review. Tsakiridis PE J Hazard Mater; 2012 May; 217-218():1-10. PubMed ID: 22480708 [TBL] [Abstract][Full Text] [Related]
30. Aluminium alloys in municipal solid waste incineration bottom ash. Hu Y; Rem P Waste Manag Res; 2009 May; 27(3):251-7. PubMed ID: 19423581 [TBL] [Abstract][Full Text] [Related]
31. A Pilot Assessment of Occupational Health Hazards in the US Electronic Scrap Recycling Industry. Ceballos DM; Gong W; Page E J Occup Environ Hyg; 2015; 12(7):482-8. PubMed ID: 25738822 [TBL] [Abstract][Full Text] [Related]
32. Material Flow Analysis with Multiple Material Characteristics to Assess the Potential for Flat Steel Prompt Scrap Prevention and Diversion without Remelting. Flint IP; Cabrera Serrenho A; Lupton RC; Allwood JM Environ Sci Technol; 2020 Feb; 54(4):2459-2466. PubMed ID: 31961662 [TBL] [Abstract][Full Text] [Related]
33. The future of copper in China--A perspective based on analysis of copper flows and stocks. Zhang L; Cai Z; Yang J; Yuan Z; Chen Y Sci Total Environ; 2015 Dec; 536():142-149. PubMed ID: 26204050 [TBL] [Abstract][Full Text] [Related]
34. End-of-life passenger vehicles recycling decision system in China based on dynamic material flow analysis and life cycle assessment. Liu M; Chen X; Zhang M; Lv X; Wang H; Chen Z; Huang X; Zhang X; Zhang S Waste Manag; 2020 Nov; 117():81-92. PubMed ID: 32818811 [TBL] [Abstract][Full Text] [Related]
35. Thermodynamic analysis of contamination by alloying elements in aluminum recycling. Nakajima K; Takeda O; Miki T; Matsubae K; Nakamura S; Nagasaka T Environ Sci Technol; 2010 Jul; 44(14):5594-600. PubMed ID: 20536230 [TBL] [Abstract][Full Text] [Related]
36. Inertia of Technology Stocks: A Technology-Explicit Model for the Transition toward a Low-Carbon Global Aluminum Cycle. Langhorst M; Billy RG; Schwotzer C; Kaiser F; Müller DB Environ Sci Technol; 2024 Jun; 58(22):9624-9635. PubMed ID: 38772914 [TBL] [Abstract][Full Text] [Related]
37. Quality- and dilution losses in the recycling of ferrous materials from end-of-life passenger cars: input-output analysis under explicit consideration of scrap quality. Nakamura S; Kondo Y; Matsubae K; Nakajima K; Tasaki T; Nagasaka T Environ Sci Technol; 2012 Sep; 46(17):9266-73. PubMed ID: 22876977 [TBL] [Abstract][Full Text] [Related]
38. Evaluation of performance indicators applied to a material recovery facility fed by mixed packaging waste. Mastellone ML; Cremiato R; Zaccariello L; Lotito R Waste Manag; 2017 Jun; 64():3-11. PubMed ID: 28302523 [TBL] [Abstract][Full Text] [Related]
39. Melt Conditioned Direct Chill (MC-DC) Casting and Extrusion of AA5754 Aluminium Alloy Formulated from Recycled Taint Tabor Scrap. Al-Helal K; Patel JB; Scamans GM; Fan Z Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32549202 [TBL] [Abstract][Full Text] [Related]
40. Quantifying Recycling and Losses of Cr and Ni in Steel Throughout Multiple Life Cycles Using MaTrace-Alloy. Nakamura S; Kondo Y; Nakajima K; Ohno H; Pauliuk S Environ Sci Technol; 2017 Sep; 51(17):9469-9476. PubMed ID: 28806506 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]