These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 34801957)
81. Environmental performances of production and land application of sludge-based phosphate fertilizers-a life cycle assessment case study. Pradel M; Lippi M; Daumer ML; Aissani L Environ Sci Pollut Res Int; 2020 Jan; 27(2):2054-2070. PubMed ID: 31773534 [TBL] [Abstract][Full Text] [Related]
82. Cumulative and residual effects of repeated sewage sludge applications: forage productivity and soil quality implications in South Florida, USA. Sigua GC; Adjei MB; Rechcigl JE Environ Sci Pollut Res Int; 2005; 12(2):80-8. PubMed ID: 15859114 [TBL] [Abstract][Full Text] [Related]
83. Environmental and resource implications of phosphorus recovery from waste activated sludge. Sørensen BL; Dall OL; Habib K Waste Manag; 2015 Nov; 45():391-9. PubMed ID: 25792438 [TBL] [Abstract][Full Text] [Related]
84. Cost assessment of different routes for phosphorus recovery from wastewater using data from pilot and production plants. Nättorp A; Remmen K; Remy C Water Sci Technol; 2017 Jul; 76(2):413-424. PubMed ID: 28726706 [TBL] [Abstract][Full Text] [Related]
85. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
86. Phosphorus recycling in sewage treatment plants with biological phosphorus removal. Heinzmann B Water Sci Technol; 2005; 52(10-11):543-8. PubMed ID: 16459832 [TBL] [Abstract][Full Text] [Related]
87. Electrochemical phosphorus leaching from digested anaerobic sludge and subsequent nutrient recovery. Wang Z; He Z Water Res; 2022 Sep; 223():118996. PubMed ID: 36037712 [TBL] [Abstract][Full Text] [Related]
88. Reducing CO/NO and absorbing heavy metals in self-sustained smouldering of high-moisture sludge by regulating inert media with low-cost natural zeolite. Ma L; Zhao Y; Zhang C; Su X; Qiao Y; Fang Q; Huang J; Zhang D Environ Pollut; 2023 Nov; 337():122556. PubMed ID: 37741545 [TBL] [Abstract][Full Text] [Related]
89. Valorisation of ferric sewage sludge ashes: Potential as a phosphorus source. Guedes P; Couto N; Ottosen LM; Kirkelund GM; Mateus E; Ribeiro AB Waste Manag; 2016 Jun; 52():193-201. PubMed ID: 27033993 [TBL] [Abstract][Full Text] [Related]
90. Sewage sludge as a fuel and raw material for phosphorus recovery: Combined process of gasification and P extraction. Gorazda K; Tarko B; Werle S; Wzorek Z Waste Manag; 2018 Mar; 73():404-415. PubMed ID: 29097126 [TBL] [Abstract][Full Text] [Related]
91. Assessing and predicting phosphorus phytoavailability from sludge incineration ashes. Joseph CA; Khiari L; Gallichand J; Beecher N Chemosphere; 2022 Feb; 288(Pt 2):132498. PubMed ID: 34626660 [TBL] [Abstract][Full Text] [Related]
92. On wet chemical phosphorus recovery from sewage sludge ash by acidic or alkaline leaching and an optimized combination of both. Petzet S; Peplinski B; Cornel P Water Res; 2012 Aug; 46(12):3769-80. PubMed ID: 22579406 [TBL] [Abstract][Full Text] [Related]
93. Electrodialytic treatment for metal removal from sewage sludge ash from fluidized bed combustion. Pazos M; Kirkelund GM; Ottosen LM J Hazard Mater; 2010 Apr; 176(1-3):1073-8. PubMed ID: 20034740 [TBL] [Abstract][Full Text] [Related]
94. Sewage sludge ash to phosphorus fertiliser (II): Influences of ash and granulate type on heavy metal removal. Mattenberger H; Fraissler G; Jöller M; Brunner T; Obernberger I; Herk P; Hermann L Waste Manag; 2010; 30(8-9):1622-33. PubMed ID: 20418087 [TBL] [Abstract][Full Text] [Related]
95. Phosphorus speciation in sewage sludge and their ashes after incineration as a function of treatment processes. Nilsson C; Karlsson S; Allard B; von Kronhelm T Waste Manag Res; 2024 May; ():734242X241252913. PubMed ID: 38819926 [TBL] [Abstract][Full Text] [Related]
96. Waste to phosphorus: A transdisciplinary solution to P recovery from wastewater based on the TRIZ approach. Jama-Rodzeńska A; Białowiec A; Koziel JA; Sowiński J J Environ Manage; 2021 Jun; 287():112235. PubMed ID: 33721761 [TBL] [Abstract][Full Text] [Related]
97. Sewage sludge ash recovery as valuable raw material for chemical stabilization of leachable heavy metals. Benassi L; Zanoletti A; Depero LE; Bontempi E J Environ Manage; 2019 Sep; 245():464-470. PubMed ID: 31170635 [TBL] [Abstract][Full Text] [Related]
98. Opportunities for resource recovery from Latvian municipal sewage sludge. Zarina R; Mezule L Heliyon; 2023 Oct; 9(10):e20435. PubMed ID: 37810806 [TBL] [Abstract][Full Text] [Related]
99. Effects of the basicity on the comelting conditions of municipal solid waste incinerator fly ash and sewage sludge ash. Lin KL J Air Waste Manag Assoc; 2006 Dec; 56(12):1743-9. PubMed ID: 17195493 [TBL] [Abstract][Full Text] [Related]
100. Phosphorus recovery from sewage sludge with a hybrid process of low pressure wet oxidation and nanofiltration. Blöcher C; Niewersch C; Melin T Water Res; 2012 Apr; 46(6):2009-19. PubMed ID: 22325934 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]