These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 3480211)

  • 1. Topographic study of auditory attention-related waveforms: a preliminary report.
    Giard MH; Pernier J; Perrin F; Peronnet F
    Electroencephalogr Clin Neurophysiol Suppl; 1987; 40():92-8. PubMed ID: 3480211
    [No Abstract]   [Full Text] [Related]  

  • 2. Scalp topographies dissociate N1 and Nd components during auditory selective attention.
    Woods DL; Clayworth CC
    Electroencephalogr Clin Neurophysiol Suppl; 1987; 40():155-60. PubMed ID: 3480116
    [No Abstract]   [Full Text] [Related]  

  • 3. [The object of perception and interference resistance in the auditory system].
    Lytaev SA; Shostak VI
    Fiziol Cheloveka; 1991; 17(1):38-44. PubMed ID: 1860582
    [No Abstract]   [Full Text] [Related]  

  • 4. [The topography of the afferent and efferent flows in the mechanisms of auditory selective attention].
    Shostak VI; Lytaev SA; Golubeva LV
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1994; 44(4-5):665-73. PubMed ID: 7810208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Event-related potentials to auditory and visual selective attention in schizophrenia.
    Wood SM; Potts GF; Hall JF; Ulanday JB; Netsiri C
    Int J Psychophysiol; 2006 Apr; 60(1):67-75. PubMed ID: 16009438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural basis of auditory-induced shifts in visual time-order perception.
    McDonald JJ; Teder-Sälejärvi WA; Di Russo F; Hillyard SA
    Nat Neurosci; 2005 Sep; 8(9):1197-202. PubMed ID: 16056224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for the auditory P3a reflecting an automatic process: elicitation during highly-focused continuous visual attention.
    Muller-Gass A; Macdonald M; Schröger E; Sculthorpe L; Campbell K
    Brain Res; 2007 Sep; 1170():71-8. PubMed ID: 17692834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tracking the voluntary control of auditory spatial attention with event-related brain potentials.
    Störmer VS; Green JJ; McDonald JJ
    Psychophysiology; 2009 Mar; 46(2):357-66. PubMed ID: 19170950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Personal significance is encoded automatically by the human brain: an event-related potential study with ringtones.
    Roye A; Jacobsen T; Schröger E
    Eur J Neurosci; 2007 Aug; 26(3):784-90. PubMed ID: 17634070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain networks of bottom-up triggered and top-down controlled shifting of auditory attention.
    Salmi J; Rinne T; Koistinen S; Salonen O; Alho K
    Brain Res; 2009 Aug; 1286():155-64. PubMed ID: 19577551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of silence and attention on tinnitus perception.
    Knobel KA; Sanchez TG
    Otolaryngol Head Neck Surg; 2008 Jan; 138(1):18-22. PubMed ID: 18164988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Right hemisphere dominance for auditory attention and its modulation by eye position: an event related fMRI study.
    Petit L; Simon G; Joliot M; Andersson F; Bertin T; Zago L; Mellet E; Tzourio-Mazoyer N
    Restor Neurol Neurosci; 2007; 25(3-4):211-25. PubMed ID: 17943000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orienting attention to points in time improves stimulus processing both within and across modalities.
    Lange K; Röder B
    J Cogn Neurosci; 2006 May; 18(5):715-29. PubMed ID: 16768372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Electrophysiologic study of the reactions of the brain to regular and skipped acoustic stimuli in man].
    Opolinskiĭ ES; Konovalov VF; Rozhkova LA; Batyr' OIu
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1983; 33(3):522-8. PubMed ID: 6613344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Orienting and maintenance of spatial attention in audition and vision: an event-related brain potential study.
    Salmi J; Rinne T; Degerman A; Alho K
    Eur J Neurosci; 2007 Jun; 25(12):3725-33. PubMed ID: 17610592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Attending to visual or auditory motion affects perception within and across modalities: an event-related potential study.
    Beer AL; Röder B
    Eur J Neurosci; 2005 Feb; 21(4):1116-30. PubMed ID: 15787717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of sound location on visual task performance and electrophysiological measures of distraction.
    Corral MJ; Escera C
    Neuroreport; 2008 Oct; 19(15):1535-9. PubMed ID: 18797312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Responses of human auditory association cortex to the omission of an expected acoustic event.
    Hughes HC; Darcey TM; Barkan HI; Williamson PD; Roberts DW; Aslin CH
    Neuroimage; 2001 Jun; 13(6 Pt 1):1073-89. PubMed ID: 11352613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of auditory attention measured from human electrocorticograms.
    Neelon MF; Williams J; Garell PC
    Clin Neurophysiol; 2006 Mar; 117(3):504-21. PubMed ID: 16458596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial coincidence modulates the Colavita visual dominance effect.
    Koppen C; Spence C
    Neurosci Lett; 2007 May; 417(2):107-11. PubMed ID: 17408855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.