These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 34802276)

  • 21. Linking social and pathogen transmission networks using microbial genetics in giraffe (Giraffa camelopardalis).
    VanderWaal KL; Atwill ER; Isbell LA; McCowan B
    J Anim Ecol; 2014 Mar; 83(2):406-14. PubMed ID: 24117416
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effectiveness of Intervention Strategies on MERS-CoV Transmission Dynamics in South Korea, 2015: Simulations on the Network Based on the Real-World Contact Data.
    Kim Y; Ryu H; Lee S
    Int J Environ Res Public Health; 2021 Mar; 18(7):. PubMed ID: 33805362
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural trade-offs can predict rewiring in shrinking social networks.
    Farine DR
    J Anim Ecol; 2021 Jan; 90(1):120-130. PubMed ID: 31691962
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cryptic connections illuminate pathogen transmission within community networks.
    Hoyt JR; Langwig KE; White JP; Kaarakka HM; Redell JA; Kurta A; DePue JE; Scullon WH; Parise KL; Foster JT; Frick WF; Kilpatrick AM
    Nature; 2018 Nov; 563(7733):710-713. PubMed ID: 30455422
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparing transmission potential networks based on social network surveys, close contacts and environmental overlap in rural Madagascar.
    Kauffman K; Werner CS; Titcomb G; Pender M; Rabezara JY; Herrera JP; Shapiro JT; Solis A; Soarimalala V; Tortosa P; Kramer R; Moody J; Mucha PJ; Nunn C
    J R Soc Interface; 2022 Jan; 19(186):20210690. PubMed ID: 35016555
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Local structure can identify and quantify influential global spreaders in large scale social networks.
    Hu Y; Ji S; Jin Y; Feng L; Stanley HE; Havlin S
    Proc Natl Acad Sci U S A; 2018 Jul; 115(29):7468-7472. PubMed ID: 29970418
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Super-spreaders in infectious diseases.
    Stein RA
    Int J Infect Dis; 2011 Aug; 15(8):e510-3. PubMed ID: 21737332
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The social network context of HIV stigma: Population-based, sociocentric network study in rural Uganda.
    Takada S; Nyakato V; Nishi A; O'Malley AJ; Kakuhikire B; Perkins JM; Bangsberg DR; Christakis NA; Tsai AC
    Soc Sci Med; 2019 Jul; 233():229-236. PubMed ID: 31229909
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling Contagion Through Social Networks to Explain and Predict Gunshot Violence in Chicago, 2006 to 2014.
    Green B; Horel T; Papachristos AV
    JAMA Intern Med; 2017 Mar; 177(3):326-333. PubMed ID: 28055070
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Combining value chain and social network analysis as a viable tool for informing targeted disease surveillance in the rural poultry sector of Zambia.
    Mubamba C; Ramsay G; Abolnik C; Dautu G; Gummow B
    Transbound Emerg Dis; 2018 Dec; 65(6):1786-1796. PubMed ID: 30024113
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Social network community structure and the contact-mediated sharing of commensal
    Balasubramaniam K; Beisner B; Guan J; Vandeleest J; Fushing H; Atwill E; McCowan B
    PeerJ; 2018; 6():e4271. PubMed ID: 29372120
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pareto rules for malaria super-spreaders and super-spreading.
    Cooper L; Kang SY; Bisanzio D; Maxwell K; Rodriguez-Barraquer I; Greenhouse B; Drakeley C; Arinaitwe E; G Staedke S; Gething PW; Eckhoff P; Reiner RC; Hay SI; Dorsey G; Kamya MR; Lindsay SW; Grenfell BT; Smith DL
    Nat Commun; 2019 Sep; 10(1):3939. PubMed ID: 31477710
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Social network targeting to maximise population behaviour change: a cluster randomised controlled trial.
    Kim DA; Hwong AR; Stafford D; Hughes DA; O'Malley AJ; Fowler JH; Christakis NA
    Lancet; 2015 Jul; 386(9989):145-53. PubMed ID: 25952354
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The intrinsic vulnerability of networks to epidemics.
    Strona G; Carstens CJ; Beck PSA; Han BA
    Ecol Modell; 2018 Sep; 383():91-97. PubMed ID: 30210182
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A social network model of COVID-19.
    Karaivanov A
    PLoS One; 2020; 15(10):e0240878. PubMed ID: 33119621
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimizing sentinel surveillance in temporal network epidemiology.
    Bai Y; Yang B; Lin L; Herrera JL; Du Z; Holme P
    Sci Rep; 2017 Jul; 7(1):4804. PubMed ID: 28684777
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Core-like groups result in invalidation of identifying super-spreader by k-shell decomposition.
    Liu Y; Tang M; Zhou T; Younghae Do
    Sci Rep; 2015 May; 5():9602. PubMed ID: 25946319
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predicting the Speed of Epidemics Spreading in Networks.
    Moore S; Rogers T
    Phys Rev Lett; 2020 Feb; 124(6):068301. PubMed ID: 32109112
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Social network analysis of COVID-19 transmission in Karnataka, India.
    Saraswathi S; Mukhopadhyay A; Shah H; Ranganath TS
    Epidemiol Infect; 2020 Sep; 148():e230. PubMed ID: 32972463
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Clustering model for transmission of the SARS virus: application to epidemic control and risk assessment.
    Small M; Tse CK
    Physica A; 2005 Jun; 351(2):499-511. PubMed ID: 32288075
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.