BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 34802710)

  • 1. A CNN-based multi-target fast classification method for AR-SSVEP.
    Zhao X; Du Y; Zhang R
    Comput Biol Med; 2022 Feb; 141():105042. PubMed ID: 34802710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of stimulus number on the recognition accuracy and information transfer rate of SSVEP-BCI in augmented reality.
    Zhang R; Xu Z; Zhang L; Cao L; Hu Y; Lu B; Shi L; Yao D; Zhao X
    J Neural Eng; 2022 May; 19(3):. PubMed ID: 35477130
    [No Abstract]   [Full Text] [Related]  

  • 3. Enhanced System Robustness of Asynchronous BCI in Augmented Reality Using Steady-State Motion Visual Evoked Potential.
    Ravi A; Lu J; Pearce S; Jiang N
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():85-95. PubMed ID: 34990366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An online SSVEP-BCI system in an optical see-through augmented reality environment.
    Ke Y; Liu P; An X; Song X; Ming D
    J Neural Eng; 2020 Feb; 17(1):016066. PubMed ID: 31614342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An SSVEP-BCI in Augmented Reality.
    Liu P; Ke Y; Du J; Liu W; Kong L; Wang N; An X; Ming D
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5548-5551. PubMed ID: 31947111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Convolutional Neural Network for Enhancing the Detection of SSVEP in the Presence of Competing Stimuli.
    Ravi A; Manuel J; Heydari N; Jiang N
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6323-6326. PubMed ID: 31947288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards BCI-Based Interfaces for Augmented Reality: Feasibility, Design and Evaluation.
    Si-Mohammed H; Petit J; Jeunet C; Argelaguet F; Spindler F; Evain A; Roussel N; Casiez G; Lecuyer A
    IEEE Trans Vis Comput Graph; 2020 Mar; 26(3):1608-1621. PubMed ID: 30295623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TRCA-Net: using TRCA filters to boost the SSVEP classification with convolutional neural network.
    Deng Y; Sun Q; Wang C; Wang Y; Zhou SK
    J Neural Eng; 2023 Jul; 20(4):. PubMed ID: 37399806
    [No Abstract]   [Full Text] [Related]  

  • 9. A new grid stimulus with subtle flicker perception for user-friendly SSVEP-based BCIs.
    Ming G; Zhong H; Pei W; Gao X; Wang Y
    J Neural Eng; 2023 Mar; 20(2):. PubMed ID: 36827704
    [No Abstract]   [Full Text] [Related]  

  • 10. A Convolutional Neural Network for the Detection of Asynchronous Steady State Motion Visual Evoked Potential.
    Zhang X; Xu G; Mou X; Ravi A; Li M; Wang Y; Jiang N
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jun; 27(6):1303-1311. PubMed ID: 31071044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PMF-CNN: parallel multi-band fusion convolutional neural network for SSVEP-EEG decoding.
    Yang J; Zhao S; Fu Z; Liu X
    Biomed Phys Eng Express; 2024 Mar; 10(3):. PubMed ID: 38417170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An SSVEP-based BCI with 112 targets using frequency spatial multiplexing.
    Liu Y; Dai W; Liu Y; Hu D; Yang B; Zhou Z
    J Neural Eng; 2024 May; 21(3):. PubMed ID: 38639058
    [No Abstract]   [Full Text] [Related]  

  • 13. Phase-Approaching Stimulation Sequence for SSVEP-Based BCI: A Practical Use in VR/AR HMD.
    Hsu HT; Shyu KK; Hsu CC; Lee LH; Lee PL
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2754-2764. PubMed ID: 34847036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Robotic arm control system based on augmented reality brain-computer interface and computer vision].
    Chen X; Li K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Jun; 38(3):483-491. PubMed ID: 34180193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compact convolutional neural networks for classification of asynchronous steady-state visual evoked potentials.
    Waytowich N; Lawhern VJ; Garcia JO; Cummings J; Faller J; Sajda P; Vettel JM
    J Neural Eng; 2018 Dec; 15(6):066031. PubMed ID: 30279309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-Task Learning-Based Deep Neural Network for Steady-State Visual Evoked Potential-Based Brain-Computer Interfaces.
    Chuang CC; Lee CC; So EC; Yeng CH; Chen YJ
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36366001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Steady-State Visual Evoked Potential Classification Using Complex Valued Convolutional Neural Networks.
    Ikeda A; Washizawa Y
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multi-day and multi-band dataset for a steady-state visual-evoked potential-based brain-computer interface.
    Choi GY; Han CH; Jung YJ; Hwang HJ
    Gigascience; 2019 Nov; 8(11):. PubMed ID: 31765472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Idle-State Detection Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Maximum Evoked Response Spatial Filter.
    Zhang D; Huang B; Wu W; Li S
    Int J Neural Syst; 2015 Nov; 25(7):1550030. PubMed ID: 26246229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic decomposition graph convolutional neural network for SSVEP-based brain-computer interface.
    Zhang S; An D; Liu J; Chen J; Wei Y; Sun F
    Neural Netw; 2024 Apr; 172():106075. PubMed ID: 38278092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.