These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 34802809)
1. Antioxidant capacity of 12 major soybean isoflavones and their bioavailability under simulated digestion and in human intestinal Caco-2 cells. Kim MS; Jung YS; Jang D; Cho CH; Lee SH; Han NS; Kim DO Food Chem; 2022 Apr; 374():131493. PubMed ID: 34802809 [TBL] [Abstract][Full Text] [Related]
2. Isoflavone retention during processing, bioaccessibility, and transport by Caco-2 cells: effects of source and amount of fat in a soy soft pretzel. Simmons AL; Chitchumroonchokchai C; Vodovotz Y; Failla ML J Agric Food Chem; 2012 Dec; 60(49):12196-203. PubMed ID: 23167916 [TBL] [Abstract][Full Text] [Related]
3. Conversion of major soy isoflavone glucosides and aglycones in in vitro intestinal models. Islam MA; Punt A; Spenkelink B; Murk AJ; Rolaf van Leeuwen FX; Rietjens IM Mol Nutr Food Res; 2014 Mar; 58(3):503-15. PubMed ID: 24668774 [TBL] [Abstract][Full Text] [Related]
4. Germination time and in vitro gastrointestinal digestion impact on the isoflavone bioaccessibility and antioxidant capacities of soybean sprouts. Lu F; Wang Y; Wu S; Huang W; Yao H; Wang S; Shi X; Laborda P; Herrera-Balandrano DD Food Chem; 2024 Dec; 460(Pt 1):140517. PubMed ID: 39043074 [TBL] [Abstract][Full Text] [Related]
5. pH-adjusted solvent extraction and reversed-phase HPLC quantification of isoflavones from soybean (Glycine max (L.) Merr.). Cho CH; Jung YS; Nam TG; Rha CS; Ko MJ; Jang D; Kim HS; Kim DO J Food Sci; 2020 Mar; 85(3):673-681. PubMed ID: 32078761 [TBL] [Abstract][Full Text] [Related]
6. Effects of enzyme-assisted extraction on the profile and bioaccessibility of isoflavones from soybean flour. de Queirós LD; Dias FFG; de Ávila ARA; Macedo JA; Macedo GA; Leite Nobrega de Moura Bell JM Food Res Int; 2021 Sep; 147():110474. PubMed ID: 34399471 [TBL] [Abstract][Full Text] [Related]
7. Stability and bioaccessibility of isoflavones from soy bread during in vitro digestion. Walsh KR; Zhang YC; Vodovotz Y; Schwartz SJ; Failla ML J Agric Food Chem; 2003 Jul; 51(16):4603-9. PubMed ID: 14705884 [TBL] [Abstract][Full Text] [Related]
8. Malonyl isoflavone glucosides are chiefly hydrolyzed and absorbed in the colon. Yonemoto-Yano H; Maebuchi M; Fukui K; Tsuzaki S; Takamatsu K; Uehara M J Agric Food Chem; 2014 Mar; 62(10):2264-70. PubMed ID: 24524651 [TBL] [Abstract][Full Text] [Related]
9. Use of phytochemomics to evaluate the bioavailability and bioactivity of antioxidant peptides of soybean β-conglycinin. Amigo-Benavent M; Clemente A; Caira S; Stiuso P; Ferranti P; del Castillo MD Electrophoresis; 2014 Jun; 35(11):1582-9. PubMed ID: 24375550 [TBL] [Abstract][Full Text] [Related]
10. Enhancement of β-secretase inhibition and antioxidant activities of tempeh, a fermented soybean cake through enrichment of bioactive aglycones. Ahmad A; Ramasamy K; Majeed AB; Mani V Pharm Biol; 2015 May; 53(5):758-66. PubMed ID: 25756802 [TBL] [Abstract][Full Text] [Related]
11. Isoflavone profiles and antioxidant properties in different parts of soybean sprout. Kim MA; Kim MJ J Food Sci; 2020 Mar; 85(3):689-695. PubMed ID: 32078746 [TBL] [Abstract][Full Text] [Related]
12. Unique uptake and transport of isoflavone aglycones by human intestinal caco-2 cells: comparison of isoflavonoids and flavonoids. Murota K; Shimizu S; Miyamoto S; Izumi T; Obata A; Kikuchi M; Terao J J Nutr; 2002 Jul; 132(7):1956-61. PubMed ID: 12097676 [TBL] [Abstract][Full Text] [Related]
13. Enrichment of Polyglucosylated Isoflavones from Soybean Isoflavone Aglycones Using Optimized Amylosucrase Transglycosylation. Jung YS; Kim YJ; Kim AT; Jang D; Kim MS; Seo DH; Nam TG; Rha CS; Park CS; Kim DO Molecules; 2020 Jan; 25(1):. PubMed ID: 31906359 [TBL] [Abstract][Full Text] [Related]
14. Optimizing the potential bioactivity of isoflavones from soybeans via ultrasound pretreatment: Antioxidant potential and NF-κB activation. Falcão HG; Silva MBR; de Camargo AC; Shahidi F; Franchin M; Rosalen PL; Alencar SM; Kurozawa LE; Ida EI J Food Biochem; 2019 Nov; 43(11):e13018. PubMed ID: 31441957 [TBL] [Abstract][Full Text] [Related]
15. LC/UV/ESI-MS analysis of isoflavones in Edamame and Tofu soybeans. Wu Q; Wang M; Sciarappa WJ; Simon JE J Agric Food Chem; 2004 May; 52(10):2763-9. PubMed ID: 15137811 [TBL] [Abstract][Full Text] [Related]
16. Bioactive isoflavones in functional foods: the importance of gut microflora on bioavailability. Turner NJ; Thomson BM; Shaw IC Nutr Rev; 2003 Jun; 61(6 Pt 1):204-13. PubMed ID: 12903830 [TBL] [Abstract][Full Text] [Related]
17. Enhanced biotransformation of soybean isoflavone from glycosides to aglycones using solid-state fermentation of soybean with effective microorganisms (EM) strains. Zhang H; Yu H J Food Biochem; 2019 Apr; 43(4):e12804. PubMed ID: 31353590 [TBL] [Abstract][Full Text] [Related]
18. Verbascosides from olive mill waste water: assessment of their bioaccessibility and intestinal uptake using an in vitro digestion/Caco-2 model system. Cardinali A; Linsalata V; Lattanzio V; Ferruzzi MG J Food Sci; 2011 Mar; 76(2):H48-54. PubMed ID: 21535767 [TBL] [Abstract][Full Text] [Related]
19. Antioxidant capacity of seed coat, dehulled bean, and whole black soybeans in relation to their distributions of total phenolics, phenolic acids, anthocyanins, and isoflavones. Xu B; Chang SK J Agric Food Chem; 2008 Sep; 56(18):8365-73. PubMed ID: 18729453 [TBL] [Abstract][Full Text] [Related]
20. Bioavailability of hydroxycinnamic acids from Crepidiastrum denticulatum using simulated digestion and Caco-2 intestinal cells. Lee HJ; Cha KH; Kim CY; Nho CW; Pan CH J Agric Food Chem; 2014 Jun; 62(23):5290-5. PubMed ID: 24841645 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]