These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 34803120)
1. Exposure assessment of nanotitanium oxide powder handling using real-time size-selective particle number concentration measurements and X-ray fluorescence spectrometry -The possibility of exposure to nonagglomerated nanomaterials during the handling of nanomaterial fine powders. Takaya M; Yamada M; Kobayashi K; Higashikubo I; Hagiwara M; Ono-Ogasawara M Ind Health; 2022 Jun; 60(3):253-265. PubMed ID: 34803120 [TBL] [Abstract][Full Text] [Related]
2. Airborne monitoring to distinguish engineered nanomaterials from incidental particles for environmental health and safety. Peters TM; Elzey S; Johnson R; Park H; Grassian VH; Maher T; O'Shaughnessy P J Occup Environ Hyg; 2009 Feb; 6(2):73-81. PubMed ID: 19034793 [TBL] [Abstract][Full Text] [Related]
3. Real-Time Emission and Exposure Measurements of Multi-walled Carbon Nanotubes during Production, Power Sawing, and Testing of Epoxy-Based Nanocomposites. Hedmer M; Lovén K; Martinsson J; Messing ME; Gudmundsson A; Pagels J Ann Work Expo Health; 2022 Aug; 66(7):878-894. PubMed ID: 35297480 [TBL] [Abstract][Full Text] [Related]
4. An occupational exposure assessment for engineered nanoparticles used in semiconductor fabrication. Shepard MN; Brenner S Ann Occup Hyg; 2014 Mar; 58(2):251-65. PubMed ID: 24284882 [TBL] [Abstract][Full Text] [Related]
5. NTP Toxicity Study Report on the atmospheric characterization, particle size, chemical composition, and workplace exposure assessment of cellulose insulation (CELLULOSEINS). Morgan DL Toxic Rep Ser; 2006 Aug; (74):1-62, A1-C2. PubMed ID: 17160106 [TBL] [Abstract][Full Text] [Related]
6. Contamination and release of nanomaterials associated with the use of personal protective clothing. Tsai CS Ann Occup Hyg; 2015 May; 59(4):491-503. PubMed ID: 25582117 [TBL] [Abstract][Full Text] [Related]
7. Occupational exposure to airborne nanomaterials: An assessment of worker exposure to aerosolized metal oxide nanoparticles in a semiconductor fab and subfab. Brenner SA; Neu-Baker NM; Caglayan C; Zurbenko IG J Occup Environ Hyg; 2016 Sep; 13(9):D138-47. PubMed ID: 27135871 [TBL] [Abstract][Full Text] [Related]
8. On the Relationship between Exposure to Particles and Dustiness during Handling of Powders in Industrial Settings. Ribalta C; Viana M; López-Lilao A; Estupiñá S; Minguillón MC; Mendoza J; Díaz J; Dahmann D; Monfort E Ann Work Expo Health; 2019 Jan; 63(1):107-123. PubMed ID: 30508067 [TBL] [Abstract][Full Text] [Related]
9. Occupational Exposure to Airborne Nanomaterials: An Assessment of Worker Exposure to Aerosolized Metal Oxide Nanoparticles in Semiconductor Wastewater Treatment. Brenner SA; Neu-Baker NM; Caglayan C; Zurbenko IG J Occup Environ Hyg; 2015; 12(7):469-81. PubMed ID: 25738602 [TBL] [Abstract][Full Text] [Related]
10. Characterizing exposures to airborne metals and nanoparticle emissions in a refinery. Miller A; Drake PL; Hintz P; Habjan M Ann Occup Hyg; 2010 Jul; 54(5):504-13. PubMed ID: 20403942 [TBL] [Abstract][Full Text] [Related]
11. Occupational exposure to nanoparticles originating from welding - case studies from the Czech Republic. Berger F; Bernatíková Š; Kocůrková L; Přichystalová R; Schreiberová L Med Pr; 2021 Jun; 72(3):219-230. PubMed ID: 33835113 [TBL] [Abstract][Full Text] [Related]
12. Worker Exposure and High Time-Resolution Analyses of Process-Related Submicrometre Particle Concentrations at Mixing Stations in Two Paint Factories. Koponen IK; Koivisto AJ; Jensen KA Ann Occup Hyg; 2015 Jul; 59(6):749-63. PubMed ID: 25863226 [TBL] [Abstract][Full Text] [Related]
13. Exposure assessment of workplaces manufacturing nanosized TiO2 and silver. Lee JH; Kwon M; Ji JH; Kang CS; Ahn KH; Han JH; Yu IJ Inhal Toxicol; 2011 Mar; 23(4):226-36. PubMed ID: 21456955 [TBL] [Abstract][Full Text] [Related]
14. Exposure assessment of carbon nanotube manufacturing workplaces. Lee JH; Lee SB; Bae GN; Jeon KS; Yoon JU; Ji JH; Sung JH; Lee BG; Lee JH; Yang JS; Kim HY; Kang CS; Yu IJ Inhal Toxicol; 2010 Apr; 22(5):369-81. PubMed ID: 20121582 [TBL] [Abstract][Full Text] [Related]
15. Inhalation exposure during spray application and subsequent sanding of a wood sealant containing zinc oxide nanoparticles. Cooper MR; West GH; Burrelli LG; Dresser D; Griffin KN; Segrave AM; Perrenoud J; Lippy BE J Occup Environ Hyg; 2017 Jul; 14(7):510-522. PubMed ID: 28406371 [TBL] [Abstract][Full Text] [Related]
16. Measurement of the physical properties of aerosols in a fullerene factory for inhalation exposure assessment. Fujitani Y; Kobayashi T; Arashidani K; Kunugita N; Suemura K J Occup Environ Hyg; 2008 Jun; 5(6):380-9. PubMed ID: 18401789 [TBL] [Abstract][Full Text] [Related]
17. Emissions and exposures of graphene nanomaterials, titanium dioxide nanofibers, and nanoparticles during down-stream industrial handling. Lovén K; Franzén SM; Isaxon C; Messing ME; Martinsson J; Gudmundsson A; Pagels J; Hedmer M; J Expo Sci Environ Epidemiol; 2021 Jul; 31(4):736-752. PubMed ID: 32546827 [TBL] [Abstract][Full Text] [Related]
18. Characterization of Occupational Exposures to Engineered Nanoparticles During the Finishing Process of a Hardwood Floor Manufacturing Plant. Debia M; Carpentier M; L'Espérance G Ann Work Expo Health; 2021 Aug; 65(7):868-873. PubMed ID: 33733669 [TBL] [Abstract][Full Text] [Related]
19. Dustiness of fine and nanoscale powders. Evans DE; Turkevich LA; Roettgers CT; Deye GJ; Baron PA Ann Occup Hyg; 2013 Mar; 57(2):261-77. PubMed ID: 23065675 [TBL] [Abstract][Full Text] [Related]
20. Identifying the hazard characteristics of powder byproducts generated from semiconductor fabrication processes. Choi KM; An HC; Kim KS J Occup Environ Hyg; 2015; 12(2):114-22. PubMed ID: 25192369 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]