BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 34803166)

  • 1. Runx3 is required for oncogenic Myc upregulation in p53-deficient osteosarcoma.
    Otani S; Date Y; Ueno T; Ito T; Kajikawa S; Omori K; Taniuchi I; Umeda M; Komori T; Toguchida J; Ito K
    Oncogene; 2022 Jan; 41(5):683-691. PubMed ID: 34803166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. C/ebpα represses the oncogenic Runx3-Myc axis in p53-deficient osteosarcoma development.
    Omori K; Otani S; Date Y; Ueno T; Ito T; Umeda M; Ito K
    Oncogene; 2023 Aug; 42(33):2485-2494. PubMed ID: 37402881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oncogenic Runx1-Myc axis in p53-deficient thymic lymphoma.
    Date Y; Taniuchi I; Ito K
    Gene; 2022 Apr; 819():146234. PubMed ID: 35114276
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Ito K; Otani S; Date Y
    Cells; 2023 Apr; 12(8):. PubMed ID: 37190031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oncogenic RUNX3: A Link between p53 Deficiency and MYC Dysregulation.
    Date Y; Ito K
    Mol Cells; 2020 Feb; 43(2):176-181. PubMed ID: 31991537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RUNX3 and p53: How Two Tumor Suppressors Cooperate Against Oncogenic Ras?
    Lee JW; van Wijnen A; Bae SC
    Adv Exp Med Biol; 2017; 962():321-332. PubMed ID: 28299666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RUNX3 modulates DNA damage-mediated phosphorylation of tumor suppressor p53 at Ser-15 and acts as a co-activator for p53.
    Yamada C; Ozaki T; Ando K; Suenaga Y; Inoue K; Ito Y; Okoshi R; Kageyama H; Kimura H; Miyazaki M; Nakagawara A
    J Biol Chem; 2010 May; 285(22):16693-703. PubMed ID: 20353948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overexpression of RUNX3 Represses RUNX1 to Drive Transformation of Myelodysplastic Syndrome.
    Yokomizo-Nakano T; Kubota S; Bai J; Hamashima A; Morii M; Sun Y; Katagiri S; Iimori M; Kanai A; Tanaka D; Oshima M; Harada Y; Ohyashiki K; Iwama A; Harada H; Osato M; Sashida G
    Cancer Res; 2020 Jun; 80(12):2523-2536. PubMed ID: 32341038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long non-coding RNA GClnc1 promotes tumorigenesis in osteosarcoma by inhibiting p53 signaling.
    Sui Y; Han Y; Zhao X; Li D; Li G
    Biochem Biophys Res Commun; 2018 Dec; 507(1-4):36-42. PubMed ID: 30454890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RUNX3 is oncogenic in natural killer/T-cell lymphoma and is transcriptionally regulated by MYC.
    Selvarajan V; Osato M; Nah GSS; Yan J; Chung TH; Voon DC; Ito Y; Ham MF; Salto-Tellez M; Shimizu N; Choo SN; Fan S; Chng WJ; Ng SB
    Leukemia; 2017 Oct; 31(10):2219-2227. PubMed ID: 28119527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional relationship between p53 and RUNX proteins.
    Bae SC; Kolinjivadi AM; Ito Y
    J Mol Cell Biol; 2019 Mar; 11(3):224-230. PubMed ID: 30535344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. miR‑181b‑p53 negative feedback axis regulates osteosarcoma cell proliferation and invasion.
    Wan J; Long F; Zhang C; Liu Y
    Int J Mol Med; 2020 Jun; 45(6):1803-1813. PubMed ID: 32236583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutant p53 gain of function can be at the root of dedifferentiation of human osteosarcoma MG63 cells into 3AB-OS cancer stem cells.
    Di Fiore R; Marcatti M; Drago-Ferrante R; D'Anneo A; Giuliano M; Carlisi D; De Blasio A; Querques F; Pastore L; Tesoriere G; Vento R
    Bone; 2014 Mar; 60():198-212. PubMed ID: 24373920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Collaboration of MYC and RUNX2 in lymphoma simulates T-cell receptor signaling and attenuates p53 pathway activity.
    Hay J; Gilroy K; Huser C; Kilbey A; Mcdonald A; MacCallum A; Holroyd A; Cameron E; Neil JC
    J Cell Biochem; 2019 Oct; 120(10):18332-18345. PubMed ID: 31257681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Runt-related transcription factor RUNX3 is a target of MDM2-mediated ubiquitination.
    Chi XZ; Kim J; Lee YH; Lee JW; Lee KS; Wee H; Kim WJ; Park WY; Oh BC; Stein GS; Ito Y; van Wijnen AJ; Bae SC
    Cancer Res; 2009 Oct; 69(20):8111-9. PubMed ID: 19808967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. WWOX and p53 Dysregulation Synergize to Drive the Development of Osteosarcoma.
    Del Mare S; Husanie H; Iancu O; Abu-Odeh M; Evangelou K; Lovat F; Volinia S; Gordon J; Amir G; Stein J; Stein GS; Croce CM; Gorgoulis V; Lian JB; Aqeilan RI
    Cancer Res; 2016 Oct; 76(20):6107-6117. PubMed ID: 27550453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oncogenic role of SFRP2 in p53-mutant osteosarcoma development via autocrine and paracrine mechanism.
    Kim H; Yoo S; Zhou R; Xu A; Bernitz JM; Yuan Y; Gomes AM; Daniel MG; Su J; Demicco EG; Zhu J; Moore KA; Lee DF; Lemischka IR; Schaniel C
    Proc Natl Acad Sci U S A; 2018 Nov; 115(47):E11128-E11137. PubMed ID: 30385632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The crucial p53-dependent oncogenic role of JAB1 in osteosarcoma in vivo.
    Samsa WE; Mamidi MK; Bashur LA; Elliott R; Miron A; Chen Y; Lee B; Greenfield EM; Chan R; Danielpour D; Zhou G
    Oncogene; 2020 Jun; 39(23):4581-4591. PubMed ID: 32390003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Butein induces cellular senescence through reactive oxygen species-mediated p53 activation in osteosarcoma U-2 OS cells.
    Hsu YK; Chen HY; Wu CC; Huang YC; Hsieh CP; Su PF; Huang YF
    Environ Toxicol; 2021 May; 36(5):773-781. PubMed ID: 33325610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MYC Expression Is Associated With p53 Expression and TP53 Aberration and Predicts Poor Overall Survival in Acute Lymphoblastic Leukemia/Lymphoma.
    Gao L; Harbaugh B; Parr K; Patel P; Golem S; Zhang D; Woodroof J; Cui W
    Am J Clin Pathol; 2022 Jan; 157(1):119-129. PubMed ID: 34528662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.