These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 34803341)

  • 1. Microstructure and Thickness Effects on Impact Behavior and Separation Formation in X70 Pipeline Steel.
    Mitchell EB; Lucon E; Collins LE; Clarke AJ; Clarke KD
    JOM (1989); 2021; 73():. PubMed ID: 34803341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tensile Deformation and Fracture Behavior of API-5L X70 Line Pipe Steel.
    Lobanov ML; Khotinov VA; Urtsev VN; Danilov SV; Urtsev NV; Platov SI; Stepanov SI
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Side-grooved Charpy impact testing: Assessment of splitting and fracture properties of high-toughness plate steels.
    Di Gioacchino F; Lucon E; Mitchell EB; Clarke KD; Matlock DK
    Mater Sci Eng A Struct Mater; 2021 Jul; 252():. PubMed ID: 37554341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A New Model for Calculation of Arrest Toughness in the Fracture Process of the Supercritical CO
    Hu Q; Zhang N; Li Y; Wang W; Zhu J; Gong J
    ACS Omega; 2021 Jul; 6(26):16804-16815. PubMed ID: 34250340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative Correlation between Thermal Cycling and the Microstructures of X100 Pipeline Steel Laser-Welded Joints.
    Wang G; Wang J; Yin L; Hu H; Yao Z
    Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31887999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Nb Content and Second Heat Cycle Peak Temperatures on Toughness of X80 Pipeline Steel.
    Chen Y; Yang Y; He X; Chi Q; Qi L; Li W; Li X
    Materials (Basel); 2023 Dec; 16(24):. PubMed ID: 38138774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Tempforming on Strength and Toughness of Medium-Carbon Low-Alloy Steel.
    Yuzbekova D; Dudko V; Pydrin A; Gaidar S; Mironov S; Kaibyshev R
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrahigh Charpy impact toughness (~450J) achieved in high strength ferrite/martensite laminated steels.
    Cao W; Zhang M; Huang C; Xiao S; Dong H; Weng Y
    Sci Rep; 2017 Feb; 7():41459. PubMed ID: 28150692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microstructure and Charpy Impact Toughness of a 2.25Cr-1Mo-0.25V Steel Weld Metal.
    Wu K; Yan Y; Cao R; Li X; Jiang Y; Yang F; Jia X; Chen J
    Materials (Basel); 2020 Jul; 13(13):. PubMed ID: 32640646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of Effective Grain Size on Low Temperature Toughness of High-Strength Pipeline Steel.
    Niu Y; Jia S; Liu Q; Tong S; Li B; Ren Y; Wang B
    Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31703383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel Approach of Nanostructured Bainitic Steels' Production with Improved Toughness and Strength.
    Kirbiš P; Anžel I; Rudolf R; Brunčko M
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32182765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cost-Effective Alternatives to Conventional Charpy Tests for Measuring the Impact Toughness of Very-High-Toughness Steels.
    Lucon E
    J Press Vessel Technol; 2018 Apr; 140(2):. PubMed ID: 29892136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Post-Weld Heat Treatment of API 5L X70 High Strength Low Alloy Steel Welds.
    Alipooramirabad H; Paradowska A; Nafisi S; Reid M; Ghomashchi R
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33353207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of Strength-Toughness-Hardness Balance in Large Cross-Section 718H Pre-Hardened Mold Steel.
    Liu H; Fu P; Liu H; Li D
    Materials (Basel); 2018 Apr; 11(4):. PubMed ID: 29642642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative study on the effect of Y content on grain refinement in the simulated coarse-grained heat-affected zone of X70 pipeline steels.
    Cao YX; Wan XL; Hou YH; Liu Y; Song MM; Li GQ
    Micron; 2019 Dec; 127():102758. PubMed ID: 31634690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Delamination and Grain Refinement on Fracture Energy of Ultrafine-Grained Steel Determined Using an Instrumented Charpy Impact Test.
    Inoue T; Kimura Y
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of Correlation Between Fracture Toughness and Charpy Impact Energy of Cryogenic Steel Welds.
    An G; Hong S; Park J; Han I
    J Nanosci Nanotechnol; 2021 Sep; 21(9):4921-4925. PubMed ID: 33691891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of Corrosion, Mechanical Properties and Hydrogen Embrittlement of Casing Pipe Steels with Different Microstructure.
    Zvirko O; Tsyrulnyk O; Lipiec S; Dzioba I
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the microstructure and mesotexture formed during thermomechanical controlled rolling in microalloyed steels.
    Wu SJ; Davis CL
    J Microsc; 2004 Mar; 213(3):262-72. PubMed ID: 15009694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Silicon Content and Tempering Temperature on the Microstructural Evolution and Mechanical Properties of HT-9 Steels.
    Liu J; Liu W; Hao Z; Shi T; Kang L; Cui Z; Yun D
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32098140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.