These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

396 related articles for article (PubMed ID: 34803655)

  • 1. Nicotinamide Adenine Dinucleotide Phosphate Oxidases Are Everywhere in Brain Disease, but Not in Huntington's Disease?
    Villegas L; Nørremølle A; Freude K; Vilhardt F
    Front Aging Neurosci; 2021; 13():736734. PubMed ID: 34803655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elevated NADPH oxidase activity contributes to oxidative stress and cell death in Huntington's disease.
    Valencia A; Sapp E; Kimm JS; McClory H; Reeves PB; Alexander J; Ansong KA; Masso N; Frosch MP; Kegel KB; Li X; DiFiglia M
    Hum Mol Genet; 2013 Mar; 22(6):1112-31. PubMed ID: 23223017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Role of NADPH Oxidases and Oxidative Stress in Neurodegenerative Disorders.
    Tarafdar A; Pula G
    Int J Mol Sci; 2018 Nov; 19(12):. PubMed ID: 30513656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Downregulation of glial genes involved in synaptic function mitigates Huntington's disease pathogenesis.
    Onur TS; Laitman A; Zhao H; Keyho R; Kim H; Wang J; Mair M; Wang H; Li L; Perez A; de Haro M; Wan YW; Allen G; Lu B; Al-Ramahi I; Liu Z; Botas J
    Elife; 2021 Apr; 10():. PubMed ID: 33871358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amelioration of Huntington's disease phenotype in astrocytes derived from iPSC-derived neural progenitor cells of Huntington's disease monkeys.
    Cho IK; Yang B; Forest C; Qian L; Chan AWS
    PLoS One; 2019; 14(3):e0214156. PubMed ID: 30897183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dysregulation of synaptic proteins, dendritic spine abnormalities and pathological plasticity of synapses as experience-dependent mediators of cognitive and psychiatric symptoms in Huntington's disease.
    Nithianantharajah J; Hannan AJ
    Neuroscience; 2013 Oct; 251():66-74. PubMed ID: 22633949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NADPH Oxidases in Neurodegenerative Disorders: Mechanisms and Therapeutic Opportunities.
    Fiadeiro MB; Diogo JC; Silva AA; Kim YS; Cristóvão AC
    Antioxid Redox Signal; 2024 Sep; 41(7-9):522-541. PubMed ID: 38760935
    [No Abstract]   [Full Text] [Related]  

  • 8. Loss-of-Huntingtin in Medial and Lateral Ganglionic Lineages Differentially Disrupts Regional Interneuron and Projection Neuron Subtypes and Promotes Huntington's Disease-Associated Behavioral, Cellular, and Pathological Hallmarks.
    Mehler MF; Petronglo JR; Arteaga-Bracho EE; Gulinello ME; Winchester ML; Pichamoorthy N; Young SK; DeJesus CD; Ishtiaq H; Gokhan S; Molero AE
    J Neurosci; 2019 Mar; 39(10):1892-1909. PubMed ID: 30626701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New insights on NOX enzymes in the central nervous system.
    Nayernia Z; Jaquet V; Krause KH
    Antioxid Redox Signal; 2014 Jun; 20(17):2815-37. PubMed ID: 24206089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Roles of long noncoding RNAs in brain development, functional diversification and neurodegenerative diseases.
    Wu P; Zuo X; Deng H; Liu X; Liu L; Ji A
    Brain Res Bull; 2013 Aug; 97():69-80. PubMed ID: 23756188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial dysfunction and oxidative stress in Alzheimer's disease, and Parkinson's disease, Huntington's disease and Amyotrophic Lateral Sclerosis -An updated review.
    Alqahtani T; Deore SL; Kide AA; Shende BA; Sharma R; Dadarao Chakole R; Nemade LS; Kishor Kale N; Borah S; Shrikant Deokar S; Behera A; Dhawal Bhandari D; Gaikwad N; Kalam Azad A; Ghosh A
    Mitochondrion; 2023 Jul; 71():83-92. PubMed ID: 37269968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analyzing Nicotinamide Adenine Dinucleotide Phosphate Oxidase Activation in Aging and Vascular Amyloid Pathology.
    Radbruch H; Mothes R; Bremer D; Seifert S; Köhler R; Pohlan J; Ostendorf L; Günther R; Leben R; Stenzel W; Niesner RA; Hauser AE
    Front Immunol; 2017; 8():844. PubMed ID: 28824611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of NADPH oxidases in neuronal development.
    Terzi A; Suter DM
    Free Radic Biol Med; 2020 Jul; 154():33-47. PubMed ID: 32370993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acute exposure to chlorpyrifos caused NADPH oxidase mediated oxidative stress and neurotoxicity in a striatal cell model of Huntington's disease.
    Dominah GA; McMinimy RA; Kallon S; Kwakye GF
    Neurotoxicology; 2017 May; 60():54-69. PubMed ID: 28300621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced Fractalkine Levels Lead to Striatal Synaptic Plasticity Deficits in Huntington's Disease.
    Kim A; García-García E; Straccia M; Comella-Bolla A; Miguez A; Masana M; Alberch J; Canals JM; Rodríguez MJ
    Front Cell Neurosci; 2020; 14():163. PubMed ID: 32625064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NADPH oxidase expression in active multiple sclerosis lesions in relation to oxidative tissue damage and mitochondrial injury.
    Fischer MT; Sharma R; Lim JL; Haider L; Frischer JM; Drexhage J; Mahad D; Bradl M; van Horssen J; Lassmann H
    Brain; 2012 Mar; 135(Pt 3):886-99. PubMed ID: 22366799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nicotinamide Adenine Dinucleotide Phosphate Oxidase and Neurodegenerative Diseases: Mechanisms and Therapy.
    Hou L; Zhang L; Hong JS; Zhang D; Zhao J; Wang Q
    Antioxid Redox Signal; 2020 Aug; 33(5):374-393. PubMed ID: 31968994
    [No Abstract]   [Full Text] [Related]  

  • 18. NADPH oxidases as drug targets and biomarkers in neurodegenerative diseases: What is the evidence?
    Sorce S; Stocker R; Seredenina T; Holmdahl R; Aguzzi A; Chio A; Depaulis A; Heitz F; Olofsson P; Olsson T; Duveau V; Sanoudou D; Skosgater S; Vlahou A; Wasquel D; Krause KH; Jaquet V
    Free Radic Biol Med; 2017 Nov; 112():387-396. PubMed ID: 28811143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Dual Role of Reactive Oxygen Species-Generating Nicotinamide Adenine Dinucleotide Phosphate Oxidases in Gastrointestinal Inflammation and Therapeutic Perspectives.
    Dang PM; Rolas L; El-Benna J
    Antioxid Redox Signal; 2020 Aug; 33(5):354-373. PubMed ID: 31968991
    [No Abstract]   [Full Text] [Related]  

  • 20. Human Huntington's disease pluripotent stem cell-derived microglia develop normally but are abnormally hyper-reactive and release elevated levels of reactive oxygen species.
    O'Regan GC; Farag SH; Casey CS; Wood-Kaczmar A; Pocock JM; Tabrizi SJ; Andre R
    J Neuroinflammation; 2021 Apr; 18(1):94. PubMed ID: 33874957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.