These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 34804056)

  • 1. FlowKit: A Python Toolkit for Integrated Manual and Automated Cytometry Analysis Workflows.
    White S; Quinn J; Enzor J; Staats J; Mosier SM; Almarode J; Denny TN; Weinhold KJ; Ferrari G; Chan C
    Front Immunol; 2021; 12():768541. PubMed ID: 34804056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. OpenCyto: an open source infrastructure for scalable, robust, reproducible, and automated, end-to-end flow cytometry data analysis.
    Finak G; Frelinger J; Jiang W; Newell EW; Ramey J; Davis MM; Kalams SA; De Rosa SC; Gottardo R
    PLoS Comput Biol; 2014 Aug; 10(8):e1003806. PubMed ID: 25167361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TASBE Flow Analytics: A Package for Calibrated Flow Cytometry Analysis.
    Beal J; Overney C; Adler A; Yaman F; Tiberio L; Samineni M
    ACS Synth Biol; 2019 Jul; 8(7):1524-1529. PubMed ID: 31053031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FlowAtlas: an interactive tool for high-dimensional immunophenotyping analysis bridging FlowJo with computational tools in Julia.
    Coppard V; Szep G; Georgieva Z; Howlett SK; Jarvis LB; Rainbow DB; Suchanek O; Needham EJ; Mousa HS; Menon DK; Feyertag F; Mahbubani KT; Saeb-Parsy K; Jones JL
    Front Immunol; 2024; 15():1425488. PubMed ID: 39086484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An open-source solution for advanced imaging flow cytometry data analysis using machine learning.
    Hennig H; Rees P; Blasi T; Kamentsky L; Hung J; Dao D; Carpenter AE; Filby A
    Methods; 2017 Jan; 112():201-210. PubMed ID: 27594698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High throughput automated analysis of big flow cytometry data.
    Rahim A; Meskas J; Drissler S; Yue A; Lorenc A; Laing A; Saran N; White J; Abeler-Dörner L; Hayday A; Brinkman RR
    Methods; 2018 Feb; 134-135():164-176. PubMed ID: 29287915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ExCYT: A Graphical User Interface for Streamlining Analysis of High-Dimensional Cytometry Data.
    Sidhom JW; Theodros D; Murter B; Zarif JC; Ganguly S; Pardoll DM; Baras A
    J Vis Exp; 2019 Jan; (143):. PubMed ID: 30735162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient cytometry analysis with FlowSOM in Python boosts interoperability with other single-cell tools.
    Couckuyt A; Rombaut B; Saeys Y; Van Gassen S
    Bioinformatics; 2024 Mar; 40(4):. PubMed ID: 38632080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Workflows for microarray data processing in the Kepler environment.
    Stropp T; McPhillips T; Ludäscher B; Bieda M
    BMC Bioinformatics; 2012 May; 13():102. PubMed ID: 22594911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CytoML for cross-platform cytometry data sharing.
    Finak G; Jiang W; Gottardo R
    Cytometry A; 2018 Dec; 93(12):1189-1196. PubMed ID: 30551257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An active, collaborative approach to learning skills in flow cytometry.
    Fuller K; Linden MD; Lee-Pullen T; Fragall C; Erber WN; Röhrig KJ
    Adv Physiol Educ; 2016 Jun; 40(2):176-85. PubMed ID: 27068992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of Mass Cytometry Data.
    Pedersen CB; Olsen LR
    Methods Mol Biol; 2019; 1989():267-279. PubMed ID: 31077111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PaDuA: A Python Library for High-Throughput (Phospho)proteomics Data Analysis.
    Ressa A; Fitzpatrick M; van den Toorn H; Heck AJR; Altelaar M
    J Proteome Res; 2019 Feb; 18(2):576-584. PubMed ID: 30525654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of a hybrid approach to standardize immunophenotyping analysis in large population studies: The Health and Retirement Study.
    Hunter-Schlichting D; Lane J; Cole B; Flaten Z; Barcelo H; Ramasubramanian R; Cassidy E; Faul J; Crimmins E; Pankratz N; Thyagarajan B
    Sci Rep; 2020 May; 10(1):8759. PubMed ID: 32472068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PyGOLD: a python based API for docking based virtual screening workflow generation.
    Patel H; Brinkjost T; Koch O
    Bioinformatics; 2017 Aug; 33(16):2589-2590. PubMed ID: 28398502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow cytometry data analysis: Recent tools and algorithms.
    Montante S; Brinkman RR
    Int J Lab Hematol; 2019 May; 41 Suppl 1():56-62. PubMed ID: 31069980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biowep: a workflow enactment portal for bioinformatics applications.
    Romano P; Bartocci E; Bertolini G; De Paoli F; Marra D; Mauri G; Merelli E; Milanesi L
    BMC Bioinformatics; 2007 Mar; 8 Suppl 1(Suppl 1):S19. PubMed ID: 17430563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using prototyping to choose a bioinformatics workflow management system.
    Jackson M; Kavoussanakis K; Wallace EWJ
    PLoS Comput Biol; 2021 Feb; 17(2):e1008622. PubMed ID: 33630841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. K-means quantization for a web-based open-source flow cytometry analysis platform.
    Wong N; Kim D; Robinson Z; Huang C; Conboy IM
    Sci Rep; 2021 Mar; 11(1):6735. PubMed ID: 33762594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CytoPy: An autonomous cytometry analysis framework.
    Burton RJ; Ahmed R; Cuff SM; Baker S; Artemiou A; Eberl M
    PLoS Comput Biol; 2021 Jun; 17(6):e1009071. PubMed ID: 34101722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.