BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 34804083)

  • 21. Interaction of plant growth regulators and reactive oxygen species to regulate petal senescence in wallflowers (Erysimum linifolium).
    Salleh FM; Mariotti L; Spadafora ND; Price AM; Picciarelli P; Wagstaff C; Lombardi L; Rogers H
    BMC Plant Biol; 2016 Apr; 16():77. PubMed ID: 27039085
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transcriptional regulation of two RTE-like genes of carnation during flower senescence and upon ethylene exposure, wounding treatment and sucrose supply.
    Yu Y; Wang H; Liu J; Fu Z; Wang J; Liu J
    Plant Biol (Stuttg); 2011 Sep; 13(5):719-24. PubMed ID: 21815975
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ethylene-regulated expression of a carnation cysteine proteinase during flower petal senescence.
    Jones ML; Larsen PB; Woodson WR
    Plant Mol Biol; 1995 Jun; 28(3):505-12. PubMed ID: 7632919
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of ethylene in the senescence of isolated hibiscus petals.
    Woodson WR; Hanchey SH; Chisholm DN
    Plant Physiol; 1985 Nov; 79(3):679-83. PubMed ID: 16664472
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of senescence-related gene expression in carnation flower petals by ethylene.
    Lawton KA; Raghothama KG; Goldsbrough PB; Woodson WR
    Plant Physiol; 1990 Aug; 93(4):1370-5. PubMed ID: 16667627
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An organ-specific role for ethylene in rose petal expansion during dehydration and rehydration.
    Liu D; Liu X; Meng Y; Sun C; Tang H; Jiang Y; Khan MA; Xue J; Ma N; Gao J
    J Exp Bot; 2013 May; 64(8):2333-44. PubMed ID: 23599274
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ethylene-regulated asymmetric growth of the petal base promotes flower opening in rose (Rosa hybrida).
    Cheng C; Yu Q; Wang Y; Wang H; Dong Y; Ji Y; Zhou X; Li Y; Jiang CZ; Gan SS; Zhao L; Fei Z; Gao J; Ma N
    Plant Cell; 2021 May; 33(4):1229-1251. PubMed ID: 33693903
    [TBL] [Abstract][Full Text] [Related]  

  • 28. FOREVER YOUNG FLOWER Negatively Regulates Ethylene Response DNA-Binding Factors by Activating an Ethylene-Responsive Factor to Control Arabidopsis Floral Organ Senescence and Abscission.
    Chen WH; Li PF; Chen MK; Lee YI; Yang CH
    Plant Physiol; 2015 Aug; 168(4):1666-83. PubMed ID: 26063506
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Integrative analysis of miRNA and mRNA profiles in response to ethylene in rose petals during flower opening.
    Pei H; Ma N; Chen J; Zheng Y; Tian J; Li J; Zhang S; Fei Z; Gao J
    PLoS One; 2013; 8(5):e64290. PubMed ID: 23696879
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of gene expression during the transition to climacteric phase in carnation flowers (Dianthus caryophyllus L.).
    In BC; Binder BM; Falbel TG; Patterson SE
    J Exp Bot; 2013 Nov; 64(16):4923-37. PubMed ID: 24078672
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of the gynoecium in natural senescence of carnation (Dianthus caryophyllus L.) flowers.
    Shibuya K; Yoshioka T; Hashiba T; Satoh S
    J Exp Bot; 2000 Dec; 51(353):2067-73. PubMed ID: 11141180
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular aspects of flower senescence and strategies to improve flower longevity.
    Shibuya K
    Breed Sci; 2018 Jan; 68(1):99-108. PubMed ID: 29681752
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Graft-accelerated virus-induced gene silencing facilitates functional genomics in rose flowers.
    Yan H; Shi S; Ma N; Cao X; Zhang H; Qiu X; Wang Q; Jian H; Zhou N; Zhang Z; Tang K
    J Integr Plant Biol; 2018 Jan; 60(1):34-44. PubMed ID: 28895654
    [TBL] [Abstract][Full Text] [Related]  

  • 34. De novo transcriptome analysis of petal senescence in Gardenia jasminoides Ellis.
    Tsanakas GF; Manioudaki ME; Economou AS; Kalaitzis P
    BMC Genomics; 2014 Jul; 15(1):554. PubMed ID: 24993183
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transcriptome profiling reveals regulatory mechanisms underlying corolla senescence in petunia.
    Wang H; Chang X; Lin J; Chang Y; Chen JC; Reid MS; Jiang CZ
    Hortic Res; 2018; 5():16. PubMed ID: 29619227
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabolome and transcriptome integration reveals insights into the process of delayed petal abscission in rose by STS.
    Zhang J; Zhang Y; He Y; Du T; Shan D; Fan H; Wang W; Qin Z; Xin C; Pei H
    Front Plant Sci; 2022; 13():1045270. PubMed ID: 36457520
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interrelationships of ethylene and abscisic Acid in the control of rose petal senescence.
    Mayak S; Halevy AH
    Plant Physiol; 1972 Sep; 50(3):341-6. PubMed ID: 16658171
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A DELLA gene, RhGAI1, is a direct target of EIN3 and mediates ethylene-regulated rose petal cell expansion via repressing the expression of RhCesA2.
    Luo J; Ma N; Pei H; Chen J; Li J; Gao J
    J Exp Bot; 2013 Nov; 64(16):5075-84. PubMed ID: 24014864
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ethylene-sensitivity regulates proteolytic activity and cysteine protease gene expression in petunia corollas.
    Jones ML; Chaffin GS; Eason JR; Clark DG
    J Exp Bot; 2005 Oct; 56(420):2733-44. PubMed ID: 16131506
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The MADS box gene, FOREVER YOUNG FLOWER, acts as a repressor controlling floral organ senescence and abscission in Arabidopsis.
    Chen MK; Hsu WH; Lee PF; Thiruvengadam M; Chen HI; Yang CH
    Plant J; 2011 Oct; 68(1):168-85. PubMed ID: 21689171
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.