BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 34804083)

  • 41. Ethylene regulates phosphorus remobilization and expression of a phosphate transporter (PhPT1) during petunia corolla senescence.
    Chapin LJ; Jones ML
    J Exp Bot; 2009; 60(7):2179-90. PubMed ID: 19380421
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Morphological changes in senescing petal cells and the regulatory mechanism of petal senescence.
    Shibuya K; Yamada T; Ichimura K
    J Exp Bot; 2016 Oct; 67(20):5909-5918. PubMed ID: 27625416
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ethylene biosynthetic genes are differentially expressed during carnation (Dianthus caryophyllus L.) flower senescence.
    ten Have A; Woltering EJ
    Plant Mol Biol; 1997 May; 34(1):89-97. PubMed ID: 9177315
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Functional characterization of PhGR and PhGRL1 during flower senescence in the petunia.
    Yang W; Liu J; Tan Y; Zhong S; Tang N; Chen G; Yu Y
    Plant Cell Rep; 2015 Sep; 34(9):1561-8. PubMed ID: 25987314
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transcriptome changes associated with delayed flower senescence on transgenic petunia by inducing expression of etr1-1, a mutant ethylene receptor.
    Wang H; Stier G; Lin J; Liu G; Zhang Z; Chang Y; Reid MS; Jiang CZ
    PLoS One; 2013; 8(7):e65800. PubMed ID: 23874385
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ethylene-induced gene expression in carnation petals : relationship to autocatalytic ethylene production and senescence.
    Woodson WR; Lawton KA
    Plant Physiol; 1988 Jun; 87(2):498-503. PubMed ID: 16666171
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sites of ethylene production in the pollinated and unpollinated senescing carnation (Dianthus caryophyllus) inflorescence.
    Nichols R
    Planta; 1977 Jan; 135(2):155-9. PubMed ID: 24420018
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ethylene and flower longevity in Alstroemeria: relationship between tepal senescence, abscission and ethylene biosynthesis.
    Wagstaff C; Chanasut U; Harren FJ; Laarhoven LJ; Thomas B; Rogers HJ; Stead AD
    J Exp Bot; 2005 Mar; 56(413):1007-16. PubMed ID: 15689338
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Transcriptome of the floral transition in Rosa chinensis 'Old Blush'.
    Guo X; Yu C; Luo L; Wan H; Zhen N; Xu T; Tan J; Pan H; Zhang Q
    BMC Genomics; 2017 Feb; 18(1):199. PubMed ID: 28228130
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A RhABF2/Ferritin module affects rose (Rosa hybrida) petal dehydration tolerance and senescence by modulating iron levels.
    Liu J; Fan Y; Zou J; Fang Y; Wang L; Wang M; Jiang X; Liu Y; Gao J; Zhang C
    Plant J; 2017 Dec; 92(6):1157-1169. PubMed ID: 29072877
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Blue light postpones senescence of carnation flowers through regulation of ethylene and abscisic acid pathway-related genes.
    Aalifar M; Aliniaeifard S; Arab M; Mehrjerdi MZ; Serek M
    Plant Physiol Biochem; 2020 Jun; 151():103-112. PubMed ID: 32208322
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Molecular cloning and characterization of senescence-related genes from carnation flower petals.
    Lawton KA; Huang B; Goldsbrough PB; Woodson WR
    Plant Physiol; 1989 Jun; 90(2):690-6. PubMed ID: 16666829
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Physiology and molecular biology of petal senescence.
    van Doorn WG; Woltering EJ
    J Exp Bot; 2008; 59(3):453-80. PubMed ID: 18310084
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The circadian-controlled PIF8-BBX28 module regulates petal senescence in rose flowers by governing mitochondrial ROS homeostasis at night.
    Zhang Y; Wu Z; Feng M; Chen J; Qin M; Wang W; Bao Y; Xu Q; Ye Y; Ma C; Jiang CZ; Gan SS; Zhou H; Cai Y; Hong B; Gao J; Ma N
    Plant Cell; 2021 Aug; 33(8):2716-2735. PubMed ID: 34043798
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Overproduction of cytokinins in petunia flowers transformed with P(SAG12)-IPT delays corolla senescence and decreases sensitivity to ethylene.
    Chang H; Jones ML; Banowetz GM; Clark DG
    Plant Physiol; 2003 Aug; 132(4):2174-83. PubMed ID: 12913172
    [TBL] [Abstract][Full Text] [Related]  

  • 56. RNA-sequencing reveals early, dynamic transcriptome changes in the corollas of pollinated petunias.
    Broderick SR; Wijeratne S; Wijeratn AJ; Chapin LJ; Meulia T; Jones ML
    BMC Plant Biol; 2014 Nov; 14():307. PubMed ID: 25403317
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Molecular Characterization and Functional Analysis of Two Petunia
    Liu F; Hu L; Cai Y; Lin H; Liu J; Yu Y
    Front Plant Sci; 2016; 7():1606. PubMed ID: 27847510
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A detached petal disc assay and virus-induced gene silencing facilitate the study of
    Cao X; Yan H; Liu X; Li D; Sui M; Wu J; Yu H; Zhang Z
    Hortic Res; 2019; 6():136. PubMed ID: 31814989
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pollination induces autophagy in petunia petals via ethylene.
    Shibuya K; Niki T; Ichimura K
    J Exp Bot; 2013 Feb; 64(4):1111-20. PubMed ID: 23349142
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Transcriptional regulation of three EIN3-like genes of carnation (Dianthus caryophyllus L. cv. Improved White Sim) during flower development and upon wounding, pollination, and ethylene exposure.
    Iordachescu M; Verlinden S
    J Exp Bot; 2005 Aug; 56(418):2011-8. PubMed ID: 15983019
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.