These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 34805279)

  • 1. Remote Optogenetics Using Up/Down-Conversion Phosphors.
    Matsubara T; Yamashita T
    Front Mol Biosci; 2021; 8():771717. PubMed ID: 34805279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near-Infrared-Light Activatable Nanoparticles for Deep-Tissue-Penetrating Wireless Optogenetics.
    Yu N; Huang L; Zhou Y; Xue T; Chen Z; Han G
    Adv Healthc Mater; 2019 Mar; 8(6):e1801132. PubMed ID: 30633858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upconversion Nanoparticle-Mediated Optogenetics.
    Yi Z; All AH; Liu X
    Adv Exp Med Biol; 2021; 1293():641-657. PubMed ID: 33398847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rhodopsin-Based Optogenetics: Basics and Applications.
    Alekseev A; Gordeliy V; Bamberg E
    Methods Mol Biol; 2022; 2501():71-100. PubMed ID: 35857223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fiberless Optogenetics.
    Chowdhury S; Yamanaka A
    Adv Exp Med Biol; 2021; 1293():407-416. PubMed ID: 33398829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applications of upconversion nanoparticles in cellular optogenetics.
    Lin Y; Yao Y; Zhang W; Fang Q; Zhang L; Zhang Y; Xu Y
    Acta Biomater; 2021 Nov; 135():1-12. PubMed ID: 34461347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-Infrared Manipulation of Membrane Ion Channels via Upconversion Optogenetics.
    Wang Z; Hu M; Ai X; Zhang Z; Xing B
    Adv Biosyst; 2019 Jan; 3(1):e1800233. PubMed ID: 32627341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near-infrared light remotely up-regulate autophagy with spatiotemporal precision via upconversion optogenetic nanosystem.
    Pan H; Wang H; Yu J; Huang X; Hao Y; Zhang C; Ji W; Yang M; Gong X; Wu X; Chang J
    Biomaterials; 2019 Apr; 199():22-31. PubMed ID: 30735893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior.
    Glock C; Nagpal J; Gottschalk A
    Methods Mol Biol; 2015; 1327():87-103. PubMed ID: 26423970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An upconversion nanoparticle-integrated fibrillar scaffold combined with a NIR-optogenetic strategy to regulate neural cell performance.
    Wu C; Su B; Xin N; Tang J; Xiao J; Luo H; Wei D; Luo F; Sun J; Fan H
    J Mater Chem B; 2023 Jan; 11(2):430-440. PubMed ID: 36524427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrodeposited NaYF
    Zhang X; Ding J; Zou L; Tian H; Fang Y; Wang J
    J Mater Chem B; 2023 Jun; 11(24):5565-5573. PubMed ID: 36939747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible and fully implantable upconversion device for wireless optogenetic stimulation of the spinal cord in behaving animals.
    Wang Y; Xie K; Yue H; Chen X; Luo X; Liao Q; Liu M; Wang F; Shi P
    Nanoscale; 2020 Jan; 12(4):2406-2414. PubMed ID: 31782467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near-infrared (NIR) up-conversion optogenetics.
    Hososhima S; Yuasa H; Ishizuka T; Hoque MR; Yamashita T; Yamanaka A; Sugano E; Tomita H; Yawo H
    Sci Rep; 2015 Nov; 5():16533. PubMed ID: 26552717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An implantable optogenetic stimulator wirelessly powered by flexible photovoltaics with near-infrared (NIR) light.
    Jeong J; Jung J; Jung D; Kim J; Ju H; Kim T; Lee J
    Biosens Bioelectron; 2021 May; 180():113139. PubMed ID: 33714161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applications and challenges of rhodopsin-based optogenetics in biomedicine.
    Zhang H; Fang H; Liu D; Zhang Y; Adu-Amankwaah J; Yuan J; Tan R; Zhu J
    Front Neurosci; 2022; 16():966772. PubMed ID: 36213746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards minimally invasive deep brain stimulation and imaging: A near-infrared upconversion approach.
    Chen S; Wu J; Cai A; Gonzalez N; Yin R
    Neurosci Res; 2020 Mar; 152():59-65. PubMed ID: 31987879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular microbial rhodopsin-based optogenetics to control metabolism and cell signaling.
    Vlasova AD; Bukhalovich SM; Bagaeva DF; Polyakova AP; Ilyinsky NS; Nesterov SV; Tsybrov FM; Bogorodskiy AO; Zinovev EV; Mikhailov AE; Vlasov AV; Kuklin AI; Borshchevskiy VI; Bamberg E; Uversky VN; Gordeliy VI
    Chem Soc Rev; 2024 Apr; 53(7):3327-3349. PubMed ID: 38391026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial Rhodopsins as Multi-functional Photoreactive Membrane Proteins for Optogenetics.
    Nakao S; Kojima K; Sudo Y
    Biol Pharm Bull; 2021; 44(10):1357-1363. PubMed ID: 34602542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Unlimited Potential of Microbial Rhodopsins as Optical Tools.
    Kojima K; Shibukawa A; Sudo Y
    Biochemistry; 2020 Jan; 59(3):218-229. PubMed ID: 31815443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics.
    Chen S; Weitemier AZ; Zeng X; He L; Wang X; Tao Y; Huang AJY; Hashimotodani Y; Kano M; Iwasaki H; Parajuli LK; Okabe S; Teh DBL; All AH; Tsutsui-Kimura I; Tanaka KF; Liu X; McHugh TJ
    Science; 2018 Feb; 359(6376):679-684. PubMed ID: 29439241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.