BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

454 related articles for article (PubMed ID: 34805364)

  • 21. 3D Bioprinting Technologies for Tissue Engineering Applications.
    Gu BK; Choi DJ; Park SJ; Kim YJ; Kim CH
    Adv Exp Med Biol; 2018; 1078():15-28. PubMed ID: 30357616
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 3D Bioprinting: An Important Tool for Tumor Microenvironment Research.
    Li Y; Liu J; Xu S; Wang J
    Int J Nanomedicine; 2023; 18():8039-8057. PubMed ID: 38164264
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimization of mechanical stiffness and cell density of 3D bioprinted cell-laden scaffolds improves extracellular matrix mineralization and cellular organization for bone tissue engineering.
    Zhang J; Wehrle E; Adamek P; Paul GR; Qin XH; Rubert M; Müller R
    Acta Biomater; 2020 Sep; 114():307-322. PubMed ID: 32673752
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Review of 3-Dimensional Skin Bioprinting Techniques: Applications, Approaches, and Trends.
    Ishack S; Lipner SR
    Dermatol Surg; 2020 Dec; 46(12):1500-1505. PubMed ID: 32205755
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent Advances in the Design of Three-Dimensional and Bioprinted Scaffolds for Full-Thickness Wound Healing.
    Tan SH; Ngo ZH; Sci DB; Leavesley D; Liang K
    Tissue Eng Part B Rev; 2022 Feb; 28(1):160-181. PubMed ID: 33446047
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Skin tissue engineering using 3D bioprinting: An evolving research field.
    Tarassoli SP; Jessop ZM; Al-Sabah A; Gao N; Whitaker S; Doak S; Whitaker IS
    J Plast Reconstr Aesthet Surg; 2018 May; 71(5):615-623. PubMed ID: 29306639
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Three-dimensional Printing in Orthopaedic Surgery: Current Applications and Future Developments.
    Wixted CM; Peterson JR; Kadakia RJ; Adams SB
    J Am Acad Orthop Surg Glob Res Rev; 2021 Apr; 5(4):e20.00230-11. PubMed ID: 33877073
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3D Bioprinting:principles, fantasies and prospects.
    Sigaux N; Pourchet L; Breton P; Brosset S; Louvrier A; Marquette CA
    J Stomatol Oral Maxillofac Surg; 2019 Apr; 120(2):128-132. PubMed ID: 30609384
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bone Tissue Engineering through 3D Bioprinting of Bioceramic Scaffolds: A Review and Update.
    Khalaf AT; Wei Y; Wan J; Zhu J; Peng Y; Abdul Kadir SY; Zainol J; Oglah Z; Cheng L; Shi Z
    Life (Basel); 2022 Jun; 12(6):. PubMed ID: 35743934
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biomaterials-based additive manufacturing for customized bioengineering in management of otolaryngology: a comprehensive review.
    Vyas J; Shah I; Singh S; Prajapati BG
    Front Bioeng Biotechnol; 2023; 11():1234340. PubMed ID: 37744247
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3D bioprinting of graphene oxide-incorporated cell-laden bone mimicking scaffolds for promoting scaffold fidelity, osteogenic differentiation and mineralization.
    Zhang J; Eyisoylu H; Qin XH; Rubert M; Müller R
    Acta Biomater; 2021 Feb; 121():637-652. PubMed ID: 33326888
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 3D Bioprinting and Stem Cells.
    Moore CA; Shah NN; Smith CP; Rameshwar P
    Methods Mol Biol; 2018; 1842():93-103. PubMed ID: 30196404
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development and Application of Three-Dimensional Bioprinting Scaffold in the Repair of Spinal Cord Injury.
    Lu D; Yang Y; Zhang P; Ma Z; Li W; Song Y; Feng H; Yu W; Ren F; Li T; Zeng H; Wang J
    Tissue Eng Regen Med; 2022 Dec; 19(6):1113-1127. PubMed ID: 35767151
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In situ three-dimensional printing for reparative and regenerative therapy.
    Ashammakhi N; Ahadian S; Pountos I; Hu SK; Tellisi N; Bandaru P; Ostrovidov S; Dokmeci MR; Khademhosseini A
    Biomed Microdevices; 2019 Apr; 21(2):42. PubMed ID: 30955134
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Advancing bioinks for 3D bioprinting using reactive fillers: A review.
    Heid S; Boccaccini AR
    Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using 3D-bioprinting scaffold loaded with adipose-derived stem cells to burns wound healing.
    Roshangar L; Rad JS; Kheirjou R; Khosroshahi AF
    J Tissue Eng Regen Med; 2021 Jun; 15(6):546-555. PubMed ID: 33779071
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Machine learning boosts three-dimensional bioprinting.
    Ning H; Zhou T; Joo SW
    Int J Bioprint; 2023; 9(4):739. PubMed ID: 37323488
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Advances in tissue engineering of vasculature through three-dimensional bioprinting.
    Zhu J; Wang Y; Zhong L; Pan F; Wang J
    Dev Dyn; 2021 Dec; 250(12):1717-1738. PubMed ID: 34115420
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inkjet Bioprinting of Biomaterials.
    Li X; Liu B; Pei B; Chen J; Zhou D; Peng J; Zhang X; Jia W; Xu T
    Chem Rev; 2020 Oct; 120(19):10793-10833. PubMed ID: 32902959
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineering bioinks for 3D bioprinting.
    Decante G; Costa JB; Silva-Correia J; Collins MN; Reis RL; Oliveira JM
    Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33662949
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.