BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 34805599)

  • 1. A 3D Bioprinted Pseudo-Bone Drug Delivery Scaffold for Bone Tissue Engineering.
    Kondiah PJ; Kondiah PPD; Choonara YE; Marimuthu T; Pillay V
    Pharmaceutics; 2020 Feb; 12(2):. PubMed ID: 32079221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bionic Design, Materials and Performance of Bone Tissue Scaffolds.
    Wu T; Yu S; Chen D; Wang Y
    Materials (Basel); 2017 Oct; 10(10):. PubMed ID: 29039749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fused Deposition Modeling 3D-Printed Scaffolds for Bone Tissue Engineering Applications: A Review.
    Kumar P; Shamim ; Muztaba M; Ali T; Bala J; Sidhu HS; Bhatia A
    Ann Biomed Eng; 2024 May; 52(5):1184-1194. PubMed ID: 38418691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simvastatin-loaded 3D aerogel scaffolds promote bone regeneration.
    Linfeng L; Xiaowei Z; Xueqin C; Xianfeng Z
    Biomed Mater Eng; 2024; 35(2):153-163. PubMed ID: 38363602
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Laubach M; Herath B; Bock N; Suresh S; Saifzadeh S; Dargaville BL; McGovern J; Wille ML; Hutmacher DW; Medeiros Savi F
    Front Bioeng Biotechnol; 2023; 11():1272348. PubMed ID: 37860627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental study on repair of cartilage defects in the rabbits with GelMA-MSCs scaffold prepared by three-dimensional bioprinting.
    Pei Z; Gao M; Xing J; Wang C; Zhao P; Zhang H; Qu J
    Int J Bioprint; 2023; 9(2):662. PubMed ID: 37065652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteoconductivity of bone substitutes with filament-based microarchitectures: Influence of directionality, filament dimension, and distance.
    Guerrero J; Ghayor C; Bhattacharya I; Weber FE
    Int J Bioprint; 2023; 9(1):626. PubMed ID: 36844242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Dual Effect of 3D-Printed Biological Scaffolds Composed of Diverse Biomaterials in the Treatment of Bone Tumors.
    Ma Y; Zhang B; Sun H; Liu D; Zhu Y; Zhu Q; Liu X
    Int J Nanomedicine; 2023; 18():293-305. PubMed ID: 36683596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Study on Dual-Response Composite Hydrogels Based on Oriented Nanocellulose.
    Dong L; Liang M; Guo Z; Wang A; Cai G; Yuan T; Mi S; Sun W
    Int J Bioprint; 2022; 8(3):578. PubMed ID: 36105134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biological Response to Bioinspired Microporous 3D-Printed Scaffolds for Bone Tissue Engineering.
    Ledda M; Merco M; Sciortino A; Scatena E; Convertino A; Lisi A; Del Gaudio C
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite element evaluations of the mechanical properties of polycaprolactone/hydroxyapatite scaffolds by direct ink writing: Effects of pore geometry.
    Zhang B; Guo L; Chen H; Ventikos Y; Narayan RJ; Huang J
    J Mech Behav Biomed Mater; 2020 Apr; 104():103665. PubMed ID: 32174423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D Bioprinting Photo-Crosslinkable Hydrogels for Bone and Cartilage Repair.
    Mei Q; Rao J; Bei HP; Liu Y; Zhao X
    Int J Bioprint; 2021; 7(3):367. PubMed ID: 34286152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noninvasive Three-Dimensional
    Ning L; Zhu N; Smith A; Rajaram A; Hou H; Srinivasan S; Mohabatpour F; He L; Mclnnes A; Serpooshan V; Papagerakis P; Chen X
    ACS Appl Mater Interfaces; 2021 Jun; 13(22):25611-25623. PubMed ID: 34038086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances in Filament Structure of 3D Bioprinted Biodegradable Bone Repair Scaffolds.
    Lin C; Wang Y; Huang Z; Wu T; Xu W; Wu W; Xu Z
    Int J Bioprint; 2021; 7(4):426. PubMed ID: 34805599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning filament composition and microstructure of 3D-printed bioceramic scaffolds facilitate bone defect regeneration and repair.
    Chen Y; Huang J; Liu J; Wei Y; Yang X; Lei L; Chen L; Wu Y; Gou Z
    Regen Biomater; 2021 Mar; 8(2):rbab007. PubMed ID: 33738121
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.