These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 34805599)

  • 41. Combining multi-scale 3D printing technologies to engineer reinforced hydrogel-ceramic interfaces.
    Diloksumpan P; de Ruijter M; Castilho M; Gbureck U; Vermonden T; van Weeren PR; Malda J; Levato R
    Biofabrication; 2020 Feb; 12(2):025014. PubMed ID: 31918421
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Protocols of 3D Bioprinting of Gelatin Methacryloyl Hydrogel Based Bioinks.
    Xie M; Yu K; Sun Y; Shao L; Nie J; Gao Q; Qiu J; Fu J; Chen Z; He Y
    J Vis Exp; 2019 Dec; (154):. PubMed ID: 31904016
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Self-assembled Hydrogel Fiber Bundles from Oppositely Charged Polyelectrolytes Mimic Micro-/nanoscale Hierarchy of Collagen.
    Sant S; Coutinho DF; Gaharwar AK; Neves NM; Reis RL; Gomes ME; Khademhosseini A
    Adv Funct Mater; 2017 Sep; 27(36):. PubMed ID: 31885528
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering.
    Hong H; Seo YB; Kim DY; Lee JS; Lee YJ; Lee H; Ajiteru O; Sultan MT; Lee OJ; Kim SH; Park CH
    Biomaterials; 2020 Feb; 232():119679. PubMed ID: 31865191
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In vivo changes of nanoapatite crystals during bone reconstruction and the differences with native bone apatite.
    Li X; Zou Q; Chen H; Li W
    Sci Adv; 2019 Nov; 5(11):eaay6484. PubMed ID: 31763458
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Opportunities and challenges of translational 3D bioprinting.
    Murphy SV; De Coppi P; Atala A
    Nat Biomed Eng; 2020 Apr; 4(4):370-380. PubMed ID: 31695178
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Coaxial bioprinting of cell-laden vascular constructs using a gelatin-tyramine bioink.
    Hong S; Kim JS; Jung B; Won C; Hwang C
    Biomater Sci; 2019 Nov; 7(11):4578-4587. PubMed ID: 31433402
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Multicellular Co-Culture in Three-Dimensional Gelatin Methacryloyl Hydrogels for Liver Tissue Engineering.
    Cui J; Wang H; Shi Q; Sun T; Huang Q; Fukuda T
    Molecules; 2019 May; 24(9):. PubMed ID: 31067670
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Injectable osteogenic microtissues containing mesenchymal stromal cells conformally fill and repair critical-size defects.
    Annamalai RT; Hong X; Schott NG; Tiruchinapally G; Levi B; Stegemann JP
    Biomaterials; 2019 Jul; 208():32-44. PubMed ID: 30991216
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Methods for verification of 3D printed anatomic model accuracy using cardiac models as an example.
    Odeh M; Levin D; Inziello J; Lobo Fenoglietto F; Mathur M; Hermsen J; Stubbs J; Ripley B
    3D Print Med; 2019 Mar; 5(1):6. PubMed ID: 30923948
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hierarchically Patterned Polydopamine-Containing Membranes for Periodontal Tissue Engineering.
    Hasani-Sadrabadi MM; Sarrion P; Nakatsuka N; Young TD; Taghdiri N; Ansari S; Aghaloo T; Li S; Khademhosseini A; Weiss PS; Moshaverinia A
    ACS Nano; 2019 Apr; 13(4):3830-3838. PubMed ID: 30895772
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Engineering Porous β-Tricalcium Phosphate (β-TCP) Scaffolds with Multiple Channels to Promote Cell Migration, Proliferation, and Angiogenesis.
    Wang X; Lin M; Kang Y
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9223-9232. PubMed ID: 30758175
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Recent advances of self-assembling peptide-based hydrogels for biomedical applications.
    Li J; Xing R; Bai S; Yan X
    Soft Matter; 2019 Feb; 15(8):1704-1715. PubMed ID: 30724947
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Survival and prognosis with osteosarcoma: outcomes in more than 2000 patients in the EURAMOS-1 (European and American Osteosarcoma Study) cohort.
    Smeland S; Bielack SS; Whelan J; Bernstein M; Hogendoorn P; Krailo MD; Gorlick R; Janeway KA; Ingleby FC; Anninga J; Antal I; Arndt C; Brown KLB; Butterfass-Bahloul T; Calaminus G; Capra M; Dhooge C; Eriksson M; Flanagan AM; Friedel G; Gebhardt MC; Gelderblom H; Goldsby R; Grier HE; Grimer R; Hawkins DS; Hecker-Nolting S; Sundby Hall K; Isakoff MS; Jovic G; Kühne T; Kager L; von Kalle T; Kabickova E; Lang S; Lau CC; Leavey PJ; Lessnick SL; Mascarenhas L; Mayer-Steinacker R; Meyers PA; Nagarajan R; Randall RL; Reichardt P; Renard M; Rechnitzer C; Schwartz CL; Strauss S; Teot L; Timmermann B; Sydes MR; Marina N
    Eur J Cancer; 2019 Mar; 109():36-50. PubMed ID: 30685685
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Additive manufacturing applications in cardiology: A review.
    Haleem A; Javaid M; Saxena A
    Egypt Heart J; 2018 Dec; 70(4):433-441. PubMed ID: 30591768
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Three-dimensional Printing of Multilayered Tissue Engineering Scaffolds.
    Bittner SM; Guo JL; Melchiorri A; Mikos AG
    Mater Today (Kidlington); 2018 Oct; 21(8):861-874. PubMed ID: 30450010
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Aqueous Two-Phase Emulsion Bioink-Enabled 3D Bioprinting of Porous Hydrogels.
    Ying GL; Jiang N; Maharjan S; Yin YX; Chai RR; Cao X; Yang JZ; Miri AK; Hassan S; Zhang YS
    Adv Mater; 2018 Dec; 30(50):e1805460. PubMed ID: 30345555
    [TBL] [Abstract][Full Text] [Related]  

  • 58. 3D-printed polycaprolactone scaffold mixed with β-tricalcium phosphate as a bone regenerative material in rabbit calvarial defects.
    Pae HC; Kang JH; Cha JK; Lee JS; Paik JW; Jung UW; Kim BH; Choi SH
    J Biomed Mater Res B Appl Biomater; 2019 May; 107(4):1254-1263. PubMed ID: 30300967
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nonstoichiometric wollastonite bioceramic scaffolds with core-shell pore struts and adjustable mechanical and biodegradable properties.
    Jin Z; Wu R; Shen J; Yang X; Shen M; Xu W; Huang R; Zhang L; Yang G; Gao C; Gou Z; Xu S
    J Mech Behav Biomed Mater; 2018 Dec; 88():140-149. PubMed ID: 30170193
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ultrathin Cu-TCPP MOF nanosheets: a new theragnostic nanoplatform with magnetic resonance/near-infrared thermal imaging for synergistic phototherapy of cancers.
    Li B; Wang X; Chen L; Zhou Y; Dang W; Chang J; Wu C
    Theranostics; 2018; 8(15):4086-4096. PubMed ID: 30128038
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.