These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
351 related articles for article (PubMed ID: 34805601)
1. Using Spheroids as Building Blocks Towards 3D Bioprinting of Tumor Microenvironment. Zhuang P; Chiang YH; Fernanda MS; He M Int J Bioprint; 2021; 7(4):444. PubMed ID: 34805601 [TBL] [Abstract][Full Text] [Related]
2. Laser-based 3D bioprinting for spatial and size control of tumor spheroids and embryoid bodies. Kingsley DM; Roberge CL; Rudkouskaya A; Faulkner DE; Barroso M; Intes X; Corr DT Acta Biomater; 2019 Sep; 95():357-370. PubMed ID: 30776506 [TBL] [Abstract][Full Text] [Related]
3. Large-Scale, Automated Production of Adipose-Derived Stem Cell Spheroids for 3D Bioprinting. Kronemberger GS; Miranda GASC; Silva TIG; Gonçalves RM; Granjeiro JM; Baptista LS J Vis Exp; 2022 Mar; (181):. PubMed ID: 35435900 [TBL] [Abstract][Full Text] [Related]
4. Strategies for 3D bioprinting of spheroids: A comprehensive review. Banerjee D; Singh YP; Datta P; Ozbolat V; O'Donnell A; Yeo M; Ozbolat IT Biomaterials; 2022 Dec; 291():121881. PubMed ID: 36335718 [TBL] [Abstract][Full Text] [Related]
5. Emerging tumor spheroids technologies for 3D in vitro cancer modeling. Rodrigues T; Kundu B; Silva-Correia J; Kundu SC; Oliveira JM; Reis RL; Correlo VM Pharmacol Ther; 2018 Apr; 184():201-211. PubMed ID: 29097309 [TBL] [Abstract][Full Text] [Related]
6. Recent advances in microarray 3D bioprinting for high-throughput spheroid and tissue culture and analysis. Shrestha S; Lekkala VKR; Acharya P; Siddhpura D; Lee MY Essays Biochem; 2021 Aug; 65(3):481-489. PubMed ID: 34296737 [TBL] [Abstract][Full Text] [Related]
7. 3D bioprinted drug-resistant breast cancer spheroids for quantitative in situ evaluation of drug resistance. Hong S; Song JM Acta Biomater; 2022 Jan; 138():228-239. PubMed ID: 34718182 [TBL] [Abstract][Full Text] [Related]
8. Principles of Spheroid Preparation for Creation of 3D Cardiac Tissue Using Biomaterial-Free Bioprinting. Ong CS; Pitaktong I; Hibino N Methods Mol Biol; 2020; 2140():183-197. PubMed ID: 32207113 [TBL] [Abstract][Full Text] [Related]
9. 3D Modeling of Epithelial Tumors-The Synergy between Materials Engineering, 3D Bioprinting, High-Content Imaging, and Nanotechnology. Trivedi P; Liu R; Bi H; Xu C; Rosenholm JM; Åkerfelt M Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34207601 [TBL] [Abstract][Full Text] [Related]
10. 3D modeling of normal skin and cutaneous squamous cell carcinoma. A comparative study in 2D cultures, spheroids, and 3D bioprinted systems. Kurzyk A; Szumera-Ciećkiewicz A; Miłoszewska J; Chechlińska M Biofabrication; 2024 Feb; 16(2):. PubMed ID: 38377605 [TBL] [Abstract][Full Text] [Related]
11. Aspiration-assisted bioprinting for precise positioning of biologics. Ayan B; Heo DN; Zhang Z; Dey M; Povilianskas A; Drapaca C; Ozbolat IT Sci Adv; 2020 Mar; 6(10):eaaw5111. PubMed ID: 32181332 [TBL] [Abstract][Full Text] [Related]
12. Bioprinting and Differentiation of Adipose-Derived Stromal Cell Spheroids for a 3D Breast Cancer-Adipose Tissue Model. Horder H; Guaza Lasheras M; Grummel N; Nadernezhad A; Herbig J; Ergün S; Teßmar J; Groll J; Fabry B; Bauer-Kreisel P; Blunk T Cells; 2021 Apr; 10(4):. PubMed ID: 33916870 [TBL] [Abstract][Full Text] [Related]
13. 3D bioprinting complex models of cancer. Sharma R; Restan Perez M; da Silva VA; Thomsen J; Bhardwaj L; Andrade TAM; Alhussan A; Willerth SM Biomater Sci; 2023 May; 11(10):3414-3430. PubMed ID: 37000528 [TBL] [Abstract][Full Text] [Related]
14. 3D Printed Solutions for Spheroid Engineering and Cancer Research. Butelmann T; Gu Y; Li A; Tribukait-Riemenschneider F; Hoffmann J; Molazem A; Jaeger E; Pellegrini D; Forget A; Shastri VP Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35897762 [TBL] [Abstract][Full Text] [Related]
15. Aspiration-assisted bioprinting of co-cultured osteogenic spheroids for bone tissue engineering. Heo DN; Ayan B; Dey M; Banerjee D; Wee H; Lewis GS; Ozbolat IT Biofabrication; 2020 Dec; 13(1):. PubMed ID: 33059343 [TBL] [Abstract][Full Text] [Related]
16. Fabrication of in vitro 3D mineralized tissue by fusion of composite spheroids incorporating biomineral-coated nanofibers and human adipose-derived stem cells. Ahmad T; Shin HJ; Lee J; Shin YM; Perikamana SKM; Park SY; Jung HS; Shin H Acta Biomater; 2018 Jul; 74():464-477. PubMed ID: 29803004 [TBL] [Abstract][Full Text] [Related]
17. Engineering microvasculature by 3D bioprinting of prevascularized spheroids in photo-crosslinkable gelatin. De Moor L; Smet J; Plovyt M; Bekaert B; Vercruysse C; Asadian M; De Geyter N; Van Vlierberghe S; Dubruel P; Declercq H Biofabrication; 2021 Sep; 13(4):. PubMed ID: 34496350 [TBL] [Abstract][Full Text] [Related]
18. High-throughput fabrication of vascularized adipose microtissues for 3D bioprinting. Benmeridja L; De Moor L; De Maere E; Vanlauwe F; Ryx M; Tytgat L; Vercruysse C; Dubruel P; Van Vlierberghe S; Blondeel P; Declercq H J Tissue Eng Regen Med; 2020 Jun; 14(6):840-854. PubMed ID: 32336037 [TBL] [Abstract][Full Text] [Related]
19. Cell spheroids as a versatile research platform: formation mechanisms, high throughput production, characterization and applications. Decarli MC; Amaral R; Santos DPD; Tofani LB; Katayama E; Rezende RA; Silva JVLD; Swiech K; Suazo CAT; Mota C; Moroni L; Moraes ÂM Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33592595 [TBL] [Abstract][Full Text] [Related]
20. High-throughput fabrication of vascularized spheroids for bioprinting. De Moor L; Merovci I; Baetens S; Verstraeten J; Kowalska P; Krysko DV; De Vos WH; Declercq H Biofabrication; 2018 Jun; 10(3):035009. PubMed ID: 29798932 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]