These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 34805684)

  • 1. Application of Supercritical CO
    Tan D; Wang Y; Guo B; Chen F; Wei X
    ACS Omega; 2021 Nov; 6(45):30555-30561. PubMed ID: 34805684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics study of the structure and performance of simple and double bases propellants.
    Ma X; Zhu W; Xiao J; Xiao H
    J Hazard Mater; 2008 Aug; 156(1-3):201-7. PubMed ID: 18243539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Foaming Behavior and Microcellular Morphologies of Incompatible SAN/CPE Blends with Supercritical Carbon Dioxide as a Physical Blowing Agent.
    Zhang HC; Yu CN; Liang Y; Lin GX; Meng C
    Polymers (Basel); 2019 Jan; 11(1):. PubMed ID: 30960075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning the three-dimensional architecture of supercritical CO
    Salerno A; Leonardi AB; Pedram P; Di Maio E; Fanovich MA; Netti PA
    Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110518. PubMed ID: 32228998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energetic residues from field disposal of gun propellants.
    Walsh MR; Walsh ME; Hewitt AD
    J Hazard Mater; 2010 Jan; 173(1-3):115-22. PubMed ID: 19758750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Research on Mechanical Properties and Sensitivity of a Novel Modified Double-Base Rocket Propellant Plasticized by Bu-NENA.
    Sun S; Zhao B; Cheng Y; Luo Y
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of Flame Structures of Double-Base Propellant and Modified Double-Base Propellant Containing Nitramine Using OH-PLIF and Kinetic Simulation.
    Wang Y; Zhang Y; Li H; Yao E; Yu J; Zhao F; Xu S
    Molecules; 2024 Mar; 29(5):. PubMed ID: 38474686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel polymer composites from waste ethylene-propylene-diene-monomer rubber by supercritical CO2 foaming technology.
    Jeong KM; Hong YJ; Saha P; Park SH; Kim JK
    Waste Manag Res; 2014 Nov; 32(11):1113-22. PubMed ID: 25106537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative study on ignition delay time and burning rate of modified double-base propellant and fuel-rich propellant.
    Li LB; Chen T; Li WX; Yu RF
    An Acad Bras Cienc; 2023; 95(3):e20220762. PubMed ID: 37909562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Internal Explosion Performance of RDX@Nano-B Composite Explosives.
    Xi P; Sun S; Shang Y; Wang X; Dong J; Feng X
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Propellant's differentiation using FTIR-photoacoustic detection for forensic studies of improvised explosive devices.
    Álvarez Á; Yáñez J; Contreras D; Saavedra R; Sáez P; Amarasiriwardena D
    Forensic Sci Int; 2017 Nov; 280():169-175. PubMed ID: 29073514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compression Molding of Thermoplastic Polyurethane Foam Sheets with Beads Expanded by Supercritical CO
    Zhang T; Lee SJ; Yoo YH; Park KH; Kang HJ
    Polymers (Basel); 2021 Feb; 13(4):. PubMed ID: 33671823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of pressure and TEGDN content on decomposition reaction mechanism and kinetics of DB gun propellant containing the mixed ester of TEGDN and NG.
    Yi JH; Zhao FQ; Xu SY; Zhang LY; Gao HX; Hu RZ
    J Hazard Mater; 2009 Jun; 165(1-3):853-9. PubMed ID: 19059712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Foaming of Polycaprolactone and Its Impregnation with Quercetin Using Supercritical CO
    García-Casas I; Montes A; Valor D; Pereyra C; Martínez de la Ossa EJ
    Polymers (Basel); 2019 Aug; 11(9):. PubMed ID: 31450780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on the influence of moisture content on thermal stability of propellant.
    Guo S; Wang Q; Sun J; Liao X; Wang ZS
    J Hazard Mater; 2009 Aug; 168(1):536-41. PubMed ID: 19285801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability and performance of gun propellants incorporating 3,6-dihydrazino-s-tetrazine and 5-aminotetrazolium nitrate.
    Lavoie J; Petre CF; Durand S; Dubois C
    J Hazard Mater; 2019 Feb; 363():457-463. PubMed ID: 30392881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of supercritical carbon dioxide on the enzymatic production of biodiesel from waste animal fat using immobilized Candida antarctica lipase B variant.
    Pollardo AA; Lee HS; Lee D; Kim S; Kim J
    BMC Biotechnol; 2017 Sep; 17(1):70. PubMed ID: 28888230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the combustion mechanisms of ZrH
    Yang Y; Zhao F; Yuan Z; Wang Y; An T; Chen X; Xuan C; Zhang J
    Phys Chem Chem Phys; 2017 Dec; 19(48):32597-32604. PubMed ID: 29192708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on the Cocrystallization Mechanism of CL-20/HMX in a Propellant Aging Process through Theoretical Calculations and Experiments.
    Zhao X; Fu X; Zhang G; Liu X; Fan X
    ACS Omega; 2022 Mar; 7(8):7361-7369. PubMed ID: 35252726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stability studies of double-base propellants with centralite and malonanilide stabilizers using MO calculations in comparison to thermal studies.
    Zayed MA; Mohamed AA; Hassan MA
    J Hazard Mater; 2010 Jul; 179(1-3):453-61. PubMed ID: 20362395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.