These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 34805713)

  • 1. Quantum Chemistry Calculation Study on Chain Reaction Mechanisms and Thermodynamic Characteristics of Coal Spontaneous Combustion at Low Temperatures.
    Huo Y; Zhu H; He X; Fang S; Wang W
    ACS Omega; 2021 Nov; 6(45):30841-30855. PubMed ID: 34805713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reaction Mechanism of Aldehyde Groups during Coal Self-Heating.
    Qi X; Li Y; Chen L; Tang J; Xin H; Liang Z
    ACS Omega; 2020 Sep; 5(36):23184-23192. PubMed ID: 32954169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study on the Mechanism of Antioxidants Affecting the Spontaneous Combustion Oxidation of Coal.
    Zhang X; Yu C; Gao F; Lu B; Zou J
    ACS Omega; 2023 Jan; 8(3):3396-3403. PubMed ID: 36713716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of Butylated Hydroxytoluene Inhibiting the Coal Oxidation at Low Temperature: Combining Experiments and Quantum Chemical Calculations.
    Huo Y; Zhu H; He X
    ACS Omega; 2022 Jun; 7(22):18552-18568. PubMed ID: 35694513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on the inhibitory mechanism of dehydrogenated antioxidants on coal spontaneous combustion.
    Zhang X; Yu C; Lu B; Gao F; Shan C; Zou J
    Sci Rep; 2022 Dec; 12(1):21237. PubMed ID: 36482182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum Chemical Calculation of the Effects of H
    Huo Y; Zhu H; He X; Fang S; Wang W
    ACS Omega; 2021 Oct; 6(39):25594-25607. PubMed ID: 34632216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on the thermal release characteristics and the correlation transformation mechanism of microscopic active groups of oxidized coal combustion in a deep mined-out area.
    Niu HY; Sun QQ; Li SP; Sun SW; Bu YC; Yang YX; Mao ZH; Tao M
    Sci Total Environ; 2023 Sep; 890():164354. PubMed ID: 37230362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental and simulation study of inert gas mixture inhibiting coal spontaneous combustion.
    Wang X; Wang L; Li W; Liu D
    Sci Rep; 2024 Feb; 14(1):4305. PubMed ID: 38383580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Effect of Temperature on Molecular Structure of Medium-Rank Coal via Fourier Transform Infrared Spectroscopy.
    Wu M; Qin Y; Qin Y; Xu N; Feng L
    Materials (Basel); 2023 Oct; 16(20):. PubMed ID: 37895727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Mechanism of Ozone Oxidation of Coal and the Revelation of Coal Macromolecular Structure by Oxidation Products.
    Luo Q; Liu W; Zhuo Q
    ACS Omega; 2024 Jan; 9(1):753-770. PubMed ID: 38222567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation Characteristics of Functional Groups in Relation to Coal Spontaneous Combustion.
    Zhang Y; Zhang J; Li Y; Gao S; Yang C; Shi X
    ACS Omega; 2021 Mar; 6(11):7669-7679. PubMed ID: 33778277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reaction mechanism of antioxidant inhibition of hydroxyl radical in coal oxidation.
    Shu P; Zhang Y; Deng J; Zhai F; Duan Z
    Environ Sci Pollut Res Int; 2024 Jun; 31(30):43351-43368. PubMed ID: 38900404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on the thermal kinetics and microscopic characteristics of oxidized coal.
    Wang W; Zhu H; Huang H; Zhao H; Pan R
    Environ Sci Pollut Res Int; 2023 Aug; 30(36):85953-85967. PubMed ID: 37395879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal Properties and Key Groups Evolution of Low-Temperature Oxidation for Bituminous Coal under Lean-Oxygen Environment.
    Liu Z; Xu Y; Wen XL; Lv Z; Wu J; Li M; Wang L
    ACS Omega; 2021 Jun; 6(23):15115-15125. PubMed ID: 34151091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermogravimetric and infrared spectroscopic studies of the spontaneous combustion characteristics of different pre-oxidized lignites.
    Ma T; Chen X; Zhai X; Bai Y
    RSC Adv; 2019 Oct; 9(56):32476-32489. PubMed ID: 35529718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on the Formation Mechanism of the Pyrolysis Products of Lignite at Different Temperatures Based on ReaxFF-MD.
    He X; Zhu H; Huo Y; Wang W
    ACS Omega; 2021 Dec; 6(51):35572-35583. PubMed ID: 34984288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toluene combustion: reaction paths, thermochemical properties, and kinetic analysis for the methylphenyl radical + O2 reaction.
    da Silva G; Chen CC; Bozzelli JW
    J Phys Chem A; 2007 Sep; 111(35):8663-76. PubMed ID: 17696501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Organic Sulfur on Low-Temperature Oxidation of Coal and its Transition Characteristics.
    Gao F; Jia Z; Shan YF; Teng Y; Li YD; Pu XG
    ACS Omega; 2022 Nov; 7(44):39830-39839. PubMed ID: 36385873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation on Combustion Characteristics and Molecular Structures of Heiyanquan Mining Area, Xinjiang, China.
    Feng T; Zeng Q
    Molecules; 2024 Mar; 29(6):. PubMed ID: 38542868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Free radical reaction characteristics of coal low-temperature oxidation and its inhibition method.
    Li Z; Kong B; Wei A; Yang Y; Zhou Y; Zhang L
    Environ Sci Pollut Res Int; 2016 Dec; 23(23):23593-23605. PubMed ID: 27614647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.