These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 34805792)

  • 1. Electronic and lattice strain dual tailoring for boosting Pd electrocatalysis in oxygen reduction reaction.
    Zeng Q; Liu D; Liu H; Cui P; Hu C; Chen D; Xu L; Wu X; Yang J
    iScience; 2021 Nov; 24(11):103332. PubMed ID: 34805792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Core-shell Au@Pd nanoparticles with enhanced catalytic activity for oxygen reduction reaction via core-shell Au@Ag/Pd constructions.
    Chen D; Li C; Liu H; Ye F; Yang J
    Sci Rep; 2015 Jul; 5():11949. PubMed ID: 26144550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cage-bell Pt-Pd nanostructures with enhanced catalytic properties and superior methanol tolerance for oxygen reduction reaction.
    Chen D; Ye F; Liu H; Yang J
    Sci Rep; 2016 Apr; 6():24600. PubMed ID: 27079897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating lattice strain impact on the alloyed surface of small Au@PdPt core-shell nanoparticles.
    Williams BP; Yaguchi M; Lo WS; Kao CR; Lamontagne LK; Sneed BT; Brodsky CN; Chou LY; Kuo CH; Tsung CK
    Nanoscale; 2020 Apr; 12(16):8687-8692. PubMed ID: 32267279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic PdAu Interlayer Sandwiched into Pd/Pt Core/Shell Nanowires Achieves Superstable Oxygen Reduction Catalysis.
    Tao L; Huang B; Jin F; Yang Y; Luo M; Sun M; Liu Q; Gao F; Guo S
    ACS Nano; 2020 Sep; 14(9):11570-11578. PubMed ID: 32816456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shaped Pd-Ni-Pt core-sandwich-shell nanoparticles: influence of Ni sandwich layers on catalytic electrooxidations.
    Sneed BT; Young AP; Jalalpoor D; Golden MC; Mao S; Jiang Y; Wang Y; Tsung CK
    ACS Nano; 2014 Jul; 8(7):7239-50. PubMed ID: 24896733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH-Dependent growth of atomic Pd layers on trisoctahedral gold nanoparticles to realize enhanced performance in electrocatalysis and chemical catalysis.
    Song Y; Xiang C; Bi C; Wu C; He H; Du W; Huang L; Tian H; Xia H
    Nanoscale; 2018 Dec; 10(47):22302-22311. PubMed ID: 30467565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Octahedral Pd@Pt1.8Ni core-shell nanocrystals with ultrathin PtNi alloy shells as active catalysts for oxygen reduction reaction.
    Zhao X; Chen S; Fang Z; Ding J; Sang W; Wang Y; Zhao J; Peng Z; Zeng J
    J Am Chem Soc; 2015 Mar; 137(8):2804-7. PubMed ID: 25675212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coalescence of Au-Pd Nanoropes and their Application as Enhanced Electrocatalysts for the Oxygen Reduction Reaction.
    Yu J; Jin H; Wang Q; Wei X; Chen H; Wang Y
    Small; 2022 Nov; 18(44):e2203458. PubMed ID: 36123144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compressive Strain in Core-Shell Au-Pd Nanoparticles Introduced by Lateral Confinement of Deformation Twinnings to Enhance the Oxidation Reduction Reaction Performance.
    Wu C; Li H; He H; Song Y; Bi C; Du W; Xia H
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):46902-46911. PubMed ID: 31775499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Core-shell Au-Pd nanoparticles as cathode catalysts for microbial fuel cell applications.
    Yang G; Chen D; Lv P; Kong X; Sun Y; Wang Z; Yuan Z; Liu H; Yang J
    Sci Rep; 2016 Oct; 6():35252. PubMed ID: 27734945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A general and high-yield galvanic displacement approach to Au-M (M = Au, Pd, and Pt) core-shell nanostructures with porous shells and enhanced electrocatalytic performances.
    Kuai L; Geng B; Wang S; Sang Y
    Chemistry; 2012 Jul; 18(30):9423-9. PubMed ID: 22714952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laser-synthesized graphite carbon encased gold nanoparticles with specific reaction channels for efficient oxygen reduction.
    Zhang C; Li P; Wang X; Liu J; Ye Y; Chen Q; Zhang D; Liang C
    J Colloid Interface Sci; 2020 Mar; 563():74-80. PubMed ID: 31865050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-Property-Performance Relationship of Ultrathin Pd-Au Alloy Catalyst Layers for Low-Temperature Ethanol Oxidation in Alkaline Media.
    McClure JP; Boltersdorf J; Baker DR; Farinha TG; Dzuricky N; Villegas CEP; Rocha AR; Leite MS
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):24919-24932. PubMed ID: 31044596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Core/shell Au/CuPt nanoparticles and their dual electrocatalysis for both reduction and oxidation reactions.
    Sun X; Li D; Ding Y; Zhu W; Guo S; Wang ZL; Sun S
    J Am Chem Soc; 2014 Apr; 136(15):5745-9. PubMed ID: 24650288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Turning the Halide Switch in the Synthesis of Au-Pd Alloy and Core-Shell Nanoicosahedra with Terraced Shells: Performance in Electrochemical and Plasmon-Enhanced Catalysis.
    Hsu SC; Chuang YC; Sneed BT; Cullen DA; Chiu TW; Kuo CH
    Nano Lett; 2016 Sep; 16(9):5514-20. PubMed ID: 27575057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient Plasmon-Mediated Energy Funneling to the Surface of Au@Pt Core-Shell Nanocrystals.
    Engelbrekt C; Crampton KT; Fishman DA; Law M; Apkarian VA
    ACS Nano; 2020 Apr; 14(4):5061-5074. PubMed ID: 32167744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic ensemble and electronic effects in Ag-rich AgPd nanoalloy catalysts for oxygen reduction in alkaline media.
    Slanac DA; Hardin WG; Johnston KP; Stevenson KJ
    J Am Chem Soc; 2012 Jun; 134(23):9812-9. PubMed ID: 22594532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pt-Sn alloy shells with tunable composition and structure on Au nanoparticles for boosting ethanol oxidation.
    Qian N; Ji L; Li X; Huang J; Li J; Wu X; Yang D; Zhang H
    Front Chem; 2022; 10():993894. PubMed ID: 36110140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Building Durable Multimetallic Electrocatalysts from Intermetallic Seeds.
    Bueno SLA; Ashberry HM; Shafei I; Skrabalak SE
    Acc Chem Res; 2021 Apr; 54(7):1662-1672. PubMed ID: 33377763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.