These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 34805793)

  • 1. Quantitative analysis of asynchronous transcription-translation and transcription processivity in
    Zhu M; Mu H; Han F; Wang Q; Dai X
    iScience; 2021 Nov; 24(11):103333. PubMed ID: 34805793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autogenous regulation of transcription termination factor Rho and the requirement for Nus factors in Bacillus subtilis.
    Ingham CJ; Dennis J; Furneaux PA
    Mol Microbiol; 1999 Jan; 31(2):651-63. PubMed ID: 10027981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of pyrimidine biosynthetic gene expression in bacteria: repression without repressors.
    Turnbough CL; Switzer RL
    Microbiol Mol Biol Rev; 2008 Jun; 72(2):266-300, table of contents. PubMed ID: 18535147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Re-defining how mRNA degradation is coordinated with transcription and translation in bacteria.
    Kim S; Wang YH; Hassan A; Kim S
    bioRxiv; 2024 Apr; ():. PubMed ID: 38659903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maintenance of Transcription-Translation Coupling by Elongation Factor P.
    Elgamal S; Artsimovitch I; Ibba M
    mBio; 2016 Sep; 7(5):. PubMed ID: 27624127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Termination factor Rho: From the control of pervasive transcription to cell fate determination in Bacillus subtilis.
    Bidnenko V; Nicolas P; Grylak-Mielnicka A; Delumeau O; Auger S; Aucouturier A; Guerin C; Repoila F; Bardowski J; Aymerich S; Bidnenko E
    PLoS Genet; 2017 Jul; 13(7):e1006909. PubMed ID: 28723971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clustering and co-transcription of the Bacillus subtilis genes encoding the aminoacyl-tRNA synthetases specific for glutamate and for cysteine and the first enzyme for cysteine biosynthesis.
    Gagnon Y; Breton R; Putzer H; Pelchat M; Grunberg-Manago M; Lapointe J
    J Biol Chem; 1994 Mar; 269(10):7473-82. PubMed ID: 7510287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduced Rho-dependent transcription termination permits NusA-independent growth of Escherichia coli.
    Zheng C; Friedman DI
    Proc Natl Acad Sci U S A; 1994 Aug; 91(16):7543-7. PubMed ID: 8052617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dose-dependent reduction of replication elongation rate by (p)ppGpp in Escherichia coli and Bacillus subtilis.
    Denapoli J; Tehranchi AK; Wang JD
    Mol Microbiol; 2013 Apr; 88(1):93-104. PubMed ID: 23461544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Bacillus subtilis chromosome region encoding homologues of the Escherichia coli mssA and rpsA gene products.
    Sorokin A; Serror P; Pujic P; Azevedo V; Ehrlich SD
    Microbiology (Reading); 1995 Feb; 141 ( Pt 2)():311-9. PubMed ID: 7704259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How Changes in Anti-SD Sequences Would Affect SD Sequences in
    Abolbaghaei A; Silke JR; Xia X
    G3 (Bethesda); 2017 May; 7(5):1607-1615. PubMed ID: 28364038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcription-termination factor Rho from Bacills subtilis.
    Hwang JY; Doi RH
    Eur J Biochem; 1980 Feb; 104(1):313-20. PubMed ID: 6445263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Similar organization of the nusA-infB operon in Bacillus subtilis and Escherichia coli.
    Shazand K; Tucker J; Grunberg-Manago M; Rabinowitz JC; Leighton T
    J Bacteriol; 1993 May; 175(10):2880-7. PubMed ID: 8491709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of transcriptional terminators in Bacillus subtilis and related species.
    de Hoon MJ; Makita Y; Nakai K; Miyano S
    PLoS Comput Biol; 2005 Aug; 1(3):e25. PubMed ID: 16110342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutations in the ss subunit of the Bacillus subtilis RNA polymerase that confer both rifampicin resistance and hypersensitivity to NusG.
    Ingham CJ; Furneaux PA
    Microbiology (Reading); 2000 Dec; 146 Pt 12():3041-3049. PubMed ID: 11101662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of network topological units coordinating the global expression response to glucose in Bacillus subtilis and its comparison to Escherichia coli.
    Vázquez CD; Freyre-González JA; Gosset G; Loza JA; Gutiérrez-Ríos RM
    BMC Microbiol; 2009 Aug; 9():176. PubMed ID: 19703276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Translational block to expression of the Escherichia coli Tn9-derived chloramphenicol-resistance gene in Bacillus subtilis.
    Goldfarb DS; Rodriguez RL; Doi RH
    Proc Natl Acad Sci U S A; 1982 Oct; 79(19):5886-90. PubMed ID: 6310552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic changes in lysine acetylation and succinylation of the elongation factor Tu in Bacillus subtilis.
    Suzuki S; Kondo N; Yoshida M; Nishiyama M; Kosono S
    Microbiology (Reading); 2019 Jan; 165(1):65-77. PubMed ID: 30394869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trans-translation mediated by Bacillus subtilis tmRNA.
    Ito K; Tadaki T; Lee S; Takada K; Muto A; Himeno H
    FEBS Lett; 2002 Apr; 516(1-3):245-52. PubMed ID: 11959141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of E. coli Nus-factors in transcription regulation and transcription:translation coupling: From structure to mechanism.
    Burmann BM; Rösch P
    Transcription; 2011 May; 2(3):130-134. PubMed ID: 21922055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.