These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 34805973)

  • 1. A Quantitative Evaluation of Global, Rule-Based Explanations of Post-Hoc, Model Agnostic Methods.
    Vilone G; Longo L
    Front Artif Intell; 2021; 4():717899. PubMed ID: 34805973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A global model-agnostic rule-based XAI method based on Parameterized Event Primitives for time series classifiers.
    Mekonnen ET; Longo L; Dondio P
    Front Artif Intell; 2024; 7():1381921. PubMed ID: 39372662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of explainability in creating trustworthy artificial intelligence for health care: A comprehensive survey of the terminology, design choices, and evaluation strategies.
    Markus AF; Kors JA; Rijnbeek PR
    J Biomed Inform; 2021 Jan; 113():103655. PubMed ID: 33309898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Opening the Black Box: The Promise and Limitations of Explainable Machine Learning in Cardiology.
    Petch J; Di S; Nelson W
    Can J Cardiol; 2022 Feb; 38(2):204-213. PubMed ID: 34534619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physician understanding, explainability, and trust in a hypothetical machine learning risk calculator.
    Diprose WK; Buist N; Hua N; Thurier Q; Shand G; Robinson R
    J Am Med Inform Assoc; 2020 Apr; 27(4):592-600. PubMed ID: 32106285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ranking Rule-Based Automatic Explanations for Machine Learning Predictions on Asthma Hospital Encounters in Patients With Asthma: Retrospective Cohort Study.
    Zhang X; Luo G
    JMIR Med Inform; 2021 Aug; 9(8):e28287. PubMed ID: 34383673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Explainable artificial intelligence in forensics: Realistic explanations for number of contributor predictions of DNA profiles.
    Veldhuis MS; Ariëns S; Ypma RJF; Abeel T; Benschop CCG
    Forensic Sci Int Genet; 2022 Jan; 56():102632. PubMed ID: 34839075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increasing the explainability and success in classification: many-objective classification rule mining based on chaos integrated SPEA2.
    Yildirim S; Alatas B
    PeerJ Comput Sci; 2024; 10():e2307. PubMed ID: 39314719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new data mining scheme using artificial neural networks.
    Kamruzzaman SM; Jehad Sarkar AM
    Sensors (Basel); 2011; 11(5):4622-47. PubMed ID: 22163866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Informing clinical assessment by contextualizing post-hoc explanations of risk prediction models in type-2 diabetes.
    Chari S; Acharya P; Gruen DM; Zhang O; Eyigoz EK; Ghalwash M; Seneviratne O; Saiz FS; Meyer P; Chakraborty P; McGuinness DL
    Artif Intell Med; 2023 Mar; 137():102498. PubMed ID: 36868690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extracting Relational Explanations From Deep Neural Networks: A Survey From a Neural-Symbolic Perspective.
    Townsend J; Chaton T; Monteiro JM
    IEEE Trans Neural Netw Learn Syst; 2020 Sep; 31(9):3456-3470. PubMed ID: 31689216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rule-ranking method based on item utility in adaptive rule model.
    Hikmawati E; Maulidevi NU; Surendro K
    PeerJ Comput Sci; 2022; 8():e1013. PubMed ID: 35875632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial Intelligence-Based Traditional Chinese Medicine Assistive Diagnostic System: Validation Study.
    Zhang H; Ni W; Li J; Zhang J
    JMIR Med Inform; 2020 Jun; 8(6):e17608. PubMed ID: 32538797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Logic minimization and rule extraction for identification of functional sites in molecular sequences.
    Cruz-Cano R; Lee ML; Leung MY
    BioData Min; 2012 Aug; 5(1):10. PubMed ID: 22897894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine Learning Explainability in Breast Cancer Survival.
    Jansen T; Geleijnse G; Van Maaren M; Hendriks MP; Ten Teije A; Moncada-Torres A
    Stud Health Technol Inform; 2020 Jun; 270():307-311. PubMed ID: 32570396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Explainable Machine Learning Framework for Image Classification Problems: Case Study on Glioma Cancer Prediction.
    Pintelas E; Liaskos M; Livieris IE; Kotsiantis S; Pintelas P
    J Imaging; 2020 May; 6(6):. PubMed ID: 34460583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative experiments on learning information extractors for proteins and their interactions.
    Bunescu R; Ge R; Kate RJ; Marcotte EM; Mooney RJ; Ramani AK; Wong YW
    Artif Intell Med; 2005 Feb; 33(2):139-55. PubMed ID: 15811782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fuzzy jump wavelet neural network based on rule induction for dynamic nonlinear system identification with real data applications.
    Kharazihai Isfahani M; Zekri M; Marateb HR; Mañanas MA
    PLoS One; 2019; 14(12):e0224075. PubMed ID: 31816627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A qualitative research framework for the design of user-centered displays of explanations for machine learning model predictions in healthcare.
    Barda AJ; Horvat CM; Hochheiser H
    BMC Med Inform Decis Mak; 2020 Oct; 20(1):257. PubMed ID: 33032582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interpretable heartbeat classification using local model-agnostic explanations on ECGs.
    Neves I; Folgado D; Santos S; Barandas M; Campagner A; Ronzio L; Cabitza F; Gamboa H
    Comput Biol Med; 2021 Jun; 133():104393. PubMed ID: 33915362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.