These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 34805998)

  • 1. NAA80 bi-allelic missense variants result in high-frequency hearing loss, muscle weakness and developmental delay.
    Muffels IJJ; Wiame E; Fuchs SA; Massink MPG; Rehmann H; Musch JLI; Van Haaften G; Vertommen D; van Schaftingen E; van Hasselt PM
    Brain Commun; 2021; 3(4):fcab256. PubMed ID: 34805998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Naa80 is required for actin N-terminal acetylation and normal hearing in zebrafish.
    Ree R; Lin SJ; Sti Dahl LO; Huang K; Petree C; Varshney GK; Arnesen T
    Life Sci Alliance; 2024 Dec; 7(12):. PubMed ID: 39384430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. N-terminal acetylation of actin by NAA80 is essential for structural integrity of the Golgi apparatus.
    Beigl TB; Hellesvik M; Saraste J; Arnesen T; Aksnes H
    Exp Cell Res; 2020 May; 390(2):111961. PubMed ID: 32209306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Final Maturation State of β-actin Involves N-terminal Acetylation by NAA80, not N-terminal Arginylation by ATE1.
    Drazic A; Timmerman E; Kajan U; Marie M; Varland S; Impens F; Gevaert K; Arnesen T
    J Mol Biol; 2022 Jan; 434(2):167397. PubMed ID: 34896361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PFN2 and NAA80 cooperate to efficiently acetylate the N-terminus of actin.
    Ree R; Kind L; Kaziales A; Varland S; Dai M; Richter K; Drazic A; Arnesen T
    J Biol Chem; 2020 Dec; 295(49):16713-16731. PubMed ID: 32978259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural determinants and cellular environment define processed actin as the sole substrate of the N-terminal acetyltransferase NAA80.
    Goris M; Magin RS; Foyn H; Myklebust LM; Varland S; Ree R; Drazic A; Bhambra P; Støve SI; Baumann M; Haug BE; Marmorstein R; Arnesen T
    Proc Natl Acad Sci U S A; 2018 Apr; 115(17):4405-4410. PubMed ID: 29581307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NAA80 is actin's N-terminal acetyltransferase and regulates cytoskeleton assembly and cell motility.
    Drazic A; Aksnes H; Marie M; Boczkowska M; Varland S; Timmerman E; Foyn H; Glomnes N; Rebowski G; Impens F; Gevaert K; Dominguez R; Arnesen T
    Proc Natl Acad Sci U S A; 2018 Apr; 115(17):4399-4404. PubMed ID: 29581253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimized bisubstrate inhibitors for the actin N-terminal acetyltransferase NAA80.
    Myklebust LM; Baumann M; Støve SI; Foyn H; Arnesen T; Haug BE
    Front Chem; 2023; 11():1202501. PubMed ID: 37408560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Actin polymerization and cell motility are affected by NAA80-mediated posttranslational N-terminal acetylation of actin.
    Aksnes H; Marie M; Arnesen T; Drazic A
    Commun Integr Biol; 2018; 11(4):e1526572. PubMed ID: 30534344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of actin N-terminal acetylation.
    Rebowski G; Boczkowska M; Drazic A; Ree R; Goris M; Arnesen T; Dominguez R
    Sci Adv; 2020 Apr; 6(15):eaay8793. PubMed ID: 32284999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Actin's N-terminal acetyltransferase uncovered.
    Arnesen T; Marmorstein R; Dominguez R
    Cytoskeleton (Hoboken); 2018 Jul; 75(7):318-322. PubMed ID: 30084538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NAT6 acetylates the N-terminus of different forms of actin.
    Wiame E; Tahay G; Tyteca D; Vertommen D; Stroobant V; Bommer GT; Van Schaftingen E
    FEBS J; 2018 Sep; 285(17):3299-3316. PubMed ID: 30028079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elucidation of repeat motifs R1- and R2-related TRIOBP variants in autosomal recessive nonsyndromic hearing loss DFNB28 among indigenous South African individuals.
    Kabahuma RI; Schubert WD; Labuschagne C; Yan D; Pepper MS; Liu XZ
    Mol Genet Genomic Med; 2022 Oct; 10(10):e2015. PubMed ID: 36029164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bi-allelic variants in OGDHL cause a neurodevelopmental spectrum disease featuring epilepsy, hearing loss, visual impairment, and ataxia.
    Yap ZY; Efthymiou S; Seiffert S; Vargas Parra K; Lee S; Nasca A; Maroofian R; Schrauwen I; Pendziwiat M; Jung S; Bhoj E; Striano P; Mankad K; Vona B; Cuddapah S; Wagner A; Alvi JR; Davoudi-Dehaghani E; Fallah MS; Gannavarapu S; Lamperti C; Legati A; Murtaza BN; Nadeem MS; Rehman MU; Saeidi K; Salpietro V; von Spiczak S; Sandoval A; Zeinali S; Zeviani M; Reich A; ; ; Jang C; Helbig I; Barakat TS; Ghezzi D; Leal SM; Weber Y; Houlden H; Yoon WH
    Am J Hum Genet; 2021 Dec; 108(12):2368-2384. PubMed ID: 34800363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A likely pathogenic ACTG1 variant in a child showing partial phenotypic overlap with Baraitser-Winter syndrome.
    Graziani L; Cinnirella G; Ferradini V; Conte C; Bascio FL; Bengala M; Sangiuolo F; Novelli G
    Am J Med Genet A; 2023 Jun; 191(6):1565-1569. PubMed ID: 36810952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A solution to the long-standing problem of actin expression and purification.
    Ceron RH; Carman PJ; Rebowski G; Boczkowska M; Heuckeroth RO; Dominguez R
    Proc Natl Acad Sci U S A; 2022 Oct; 119(41):e2209150119. PubMed ID: 36197995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. De Novo
    Dawidziuk M; Kutkowska-Kazmierczak A; Bukowska-Olech E; Jurek M; Kalka E; Guilbride DL; Furmanek MI; Bekiesinska-Figatowska M; Bal J; Gawlinski P
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel mutation in ACTG1 causing Baraitser-Winter syndrome with extremely variable expressivity in three generations.
    Kemerley A; Sloan C; Pfeifer W; Smith R; Drack A
    Ophthalmic Genet; 2017; 38(2):152-156. PubMed ID: 27096712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pathogenic Variant in
    Conboy E; Vairo F; Waggoner D; Ober C; Das S; Dhamija R; Klee EW; Pichurin P
    Case Rep Genet; 2017; 2017():9184265. PubMed ID: 28487785
    [No Abstract]   [Full Text] [Related]  

  • 20. ACTB Loss-of-Function Mutations Result in a Pleiotropic Developmental Disorder.
    Cuvertino S; Stuart HM; Chandler KE; Roberts NA; Armstrong R; Bernardini L; Bhaskar S; Callewaert B; Clayton-Smith J; Davalillo CH; Deshpande C; Devriendt K; Digilio MC; Dixit A; Edwards M; Friedman JM; Gonzalez-Meneses A; Joss S; Kerr B; Lampe AK; Langlois S; Lennon R; Loget P; Ma DYT; McGowan R; Des Medt M; O'Sullivan J; Odent S; Parker MJ; Pebrel-Richard C; Petit F; Stark Z; Stockler-Ipsiroglu S; Tinschert S; Vasudevan P; Villa O; White SM; Zahir FR; ; Woolf AS; Banka S
    Am J Hum Genet; 2017 Dec; 101(6):1021-1033. PubMed ID: 29220674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.