These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 34806077)
1. Calibration-Free Gait Assessment by Foot-Worn Inertial Sensors. Laidig D; Jocham AJ; Guggenberger B; Adamer K; Fischer M; Seel T Front Digit Health; 2021; 3():736418. PubMed ID: 34806077 [TBL] [Abstract][Full Text] [Related]
2. Validation of Non-Restrictive Inertial Gait Analysis of Individuals with Incomplete Spinal Cord Injury in Clinical Settings. Haji Hassani R; Willi R; Rauter G; Bolliger M; Seel T Sensors (Basel); 2022 Jun; 22(11):. PubMed ID: 35684860 [TBL] [Abstract][Full Text] [Related]
3. Gait and Axial Spondyloarthritis: Comparative Gait Analysis Study Using Foot-Worn Inertial Sensors. Soulard J; Vaillant J; Baillet A; Gaudin P; Vuillerme N JMIR Mhealth Uhealth; 2021 Nov; 9(11):e27087. PubMed ID: 34751663 [TBL] [Abstract][Full Text] [Related]
4. Validation of an algorithm to assess regular and irregular gait using inertial sensors in healthy and stroke individuals. Ensink C; Smulders K; Warnar J; Keijsers N PeerJ; 2023; 11():e16641. PubMed ID: 38111664 [TBL] [Abstract][Full Text] [Related]
5. Validation of wearable inertial sensor-based gait analysis system for measurement of spatiotemporal parameters and lower extremity joint kinematics in sagittal plane. Patel G; Mullerpatan R; Agarwal B; Shetty T; Ojha R; Shaikh-Mohammed J; Sujatha S Proc Inst Mech Eng H; 2022 May; 236(5):686-696. PubMed ID: 35001713 [TBL] [Abstract][Full Text] [Related]
6. Wearable Inertial Gait Algorithms: Impact of Wear Location and Environment in Healthy and Parkinson's Populations. Celik Y; Stuart S; Woo WL; Godfrey A Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640799 [TBL] [Abstract][Full Text] [Related]
7. Validity and repeatability of inertial measurement units for measuring gait parameters. Washabaugh EP; Kalyanaraman T; Adamczyk PG; Claflin ES; Krishnan C Gait Posture; 2017 Jun; 55():87-93. PubMed ID: 28433867 [TBL] [Abstract][Full Text] [Related]
8. Validity and reliability of a portable gait analysis system for measuring spatiotemporal gait characteristics: comparison to an instrumented treadmill. Donath L; Faude O; Lichtenstein E; Nüesch C; Mündermann A J Neuroeng Rehabil; 2016 Jan; 13():6. PubMed ID: 26790409 [TBL] [Abstract][Full Text] [Related]
9. The Accuracy and Precision of Gait Spatio-Temporal Parameters Extracted from an Instrumented Sock during Treadmill and Overground Walking in Healthy Subjects and Patients with a Foot Impairment Secondary to Psoriatic Arthritis. Walha R; Lebel K; Gaudreault N; Dagenais P; Cereatti A; Della Croce U; Boissy P Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577387 [TBL] [Abstract][Full Text] [Related]
10. Validation of algorithms for calculating spatiotemporal gait parameters during continuous turning using lumbar and foot mounted inertial measurement units. Kvist A; Tinmark F; Bezuidenhout L; Reimeringer M; Conradsson DM; Franzén E J Biomech; 2024 Jan; 162():111907. PubMed ID: 38134464 [TBL] [Abstract][Full Text] [Related]
11. Gait event detection in laboratory and real life settings: Accuracy of ankle and waist sensor based methods. Storm FA; Buckley CJ; Mazzà C Gait Posture; 2016 Oct; 50():42-46. PubMed ID: 27567451 [TBL] [Abstract][Full Text] [Related]
12. Mobile inertial sensor based gait analysis: Validity and reliability of spatiotemporal gait characteristics in healthy seniors. Donath L; Faude O; Lichtenstein E; Pagenstert G; Nüesch C; Mündermann A Gait Posture; 2016 Sep; 49():371-374. PubMed ID: 27494305 [TBL] [Abstract][Full Text] [Related]
13. Inertial Measurement Unit-Based Estimation of Foot Trajectory for Clinical Gait Analysis. Hori K; Mao Y; Ono Y; Ora H; Hirobe Y; Sawada H; Inaba A; Orimo S; Miyake Y Front Physiol; 2019; 10():1530. PubMed ID: 31998138 [TBL] [Abstract][Full Text] [Related]
14. Measurement of foot placement and its variability with inertial sensors. Rebula JR; Ojeda LV; Adamczyk PG; Kuo AD Gait Posture; 2013 Sep; 38(4):974-80. PubMed ID: 23810335 [TBL] [Abstract][Full Text] [Related]
15. Timing estimation for gait in water from inertial sensor measurements: Analysis of the performance of 17 algorithms. Pacini Panebianco G; Bisi MC; Stagni R; Fantozzi S Comput Methods Programs Biomed; 2020 Dec; 197():105703. PubMed ID: 32818913 [TBL] [Abstract][Full Text] [Related]
16. Automatic Body Segment and Side Recognition of an Inertial Measurement Unit Sensor during Gait. Baniasad M; Martin R; Crevoisier X; Pichonnaz C; Becce F; Aminian K Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050647 [TBL] [Abstract][Full Text] [Related]
17. Measuring markers of aging and knee osteoarthritis gait using inertial measurement units. Hafer JF; Provenzano SG; Kern KL; Agresta CE; Grant JA; Zernicke RF J Biomech; 2020 Jan; 99():109567. PubMed ID: 31916999 [TBL] [Abstract][Full Text] [Related]
18. Estimation of Walking Speed and Its Spatiotemporal Determinants Using a Single Inertial Sensor Worn on the Thigh: From Healthy to Hemiparetic Walking. Arumukhom Revi D; De Rossi SMM; Walsh CJ; Awad LN Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770283 [TBL] [Abstract][Full Text] [Related]
19. Wearable Sensor-Based Step Length Estimation During Overground Locomotion Using a Deep Convolutional Neural Network. Jin H; Kang I; Choi G; Molinaro DD; Young AJ Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4897-4900. PubMed ID: 34892306 [TBL] [Abstract][Full Text] [Related]
20. The Diverse Gait Dataset: Gait Segmentation Using Inertial Sensors for Pedestrian Localization with Different Genders, Heights and Walking Speeds. Huang C; Zhang F; Xu Z; Wei J Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214579 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]