These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 34806077)

  • 21. Characterizing Bodyweight-Supported Treadmill Walking on Land and Underwater Using Foot-Worn Inertial Measurement Units and Machine Learning for Gait Event Detection.
    Song S; Fernandes NJ; Nordin AD
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37766002
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Validation of a Spatiotemporal Gait Model Using Inertial Measurement Units for Early-Stage Parkinson's Disease Detection During Turns.
    Yang Y; Chen L; Pang J; Huang X; Meng L; Ming D
    IEEE Trans Biomed Eng; 2022 Dec; 69(12):3591-3600. PubMed ID: 35511847
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spatio-temporal gait analysis in children with cerebral palsy using, foot-worn inertial sensors.
    Brégou Bourgeois A; Mariani B; Aminian K; Zambelli PY; Newman CJ
    Gait Posture; 2014; 39(1):436-42. PubMed ID: 24044970
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A robust walking detection algorithm using a single foot-worn inertial sensor: validation in real-life settings.
    Prigent G; Aminian K; Cereatti A; Salis F; Bonci T; Scott K; Mazzà C; Alcock L; Del Din S; Gazit E; Hansen C; Paraschiv-Ionescu A;
    Med Biol Eng Comput; 2023 Sep; 61(9):2341-2352. PubMed ID: 37069465
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Real-World Gait Detection Using a Wrist-Worn Inertial Sensor: Validation Study.
    Kluge F; Brand YE; Micó-Amigo ME; Bertuletti S; D'Ascanio I; Gazit E; Bonci T; Kirk C; Küderle A; Palmerini L; Paraschiv-Ionescu A; Salis F; Soltani A; Ullrich M; Alcock L; Aminian K; Becker C; Brown P; Buekers J; Carsin AE; Caruso M; Caulfield B; Cereatti A; Chiari L; Echevarria C; Eskofier B; Evers J; Garcia-Aymerich J; Hache T; Hansen C; Hausdorff JM; Hiden H; Hume E; Keogh A; Koch S; Maetzler W; Megaritis D; Niessen M; Perlman O; Schwickert L; Scott K; Sharrack B; Singleton D; Vereijken B; Vogiatzis I; Yarnall A; Rochester L; Mazzà C; Del Din S; Mueller A
    JMIR Form Res; 2024 May; 8():e50035. PubMed ID: 38691395
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inertial sensors for gait monitoring and design of adaptive controllers for exoskeletons after stroke: a feasibility study.
    De Miguel-Fernández J; Salazar-Del Rio M; Rey-Prieto M; Bayón C; Guirao-Cano L; Font-Llagunes JM; Lobo-Prat J
    Front Bioeng Biotechnol; 2023; 11():1208561. PubMed ID: 37744246
    [No Abstract]   [Full Text] [Related]  

  • 27. Estimation of spatio-temporal parameters of gait from magneto-inertial measurement units: multicenter validation among Parkinson, mildly cognitively impaired and healthy older adults.
    Bertoli M; Cereatti A; Trojaniello D; Avanzino L; Pelosin E; Del Din S; Rochester L; Ginis P; Bekkers EMJ; Mirelman A; Hausdorff JM; Della Croce U
    Biomed Eng Online; 2018 May; 17(1):58. PubMed ID: 29739456
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessment of Foot Strike Angle and Forward Propulsion with Wearable Sensors in People with Stroke.
    Ensink CJ; Hofstad C; Theunissen T; Keijsers NLW
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38276401
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Estimating Walking Speed in the Wild.
    Baroudi L; Newman MW; Jackson EA; Barton K; Shorter KA; Cain SM
    Front Sports Act Living; 2020; 2():583848. PubMed ID: 33345151
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Validation of shoe-worn Gait Up Physilog®5 wearable inertial sensors in adolescents.
    Carroll K; Kennedy RA; Koutoulas V; Bui M; Kraan CM
    Gait Posture; 2022 Jan; 91():19-25. PubMed ID: 34628218
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Accuracy and comparison of sensor-based gait speed estimations under standardized and daily life conditions in children undergoing rehabilitation.
    Rast FM; Aschwanden S; Werner C; Demkó L; Labruyère R
    J Neuroeng Rehabil; 2022 Oct; 19(1):105. PubMed ID: 36195950
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gait regularity assessed by wearable sensors: Comparison between accelerometer and gyroscope data for different sensor locations and walking speeds in healthy subjects.
    Scalera GM; Ferrarin M; Rabuffetti M
    J Biomech; 2020 Dec; 113():110115. PubMed ID: 33221581
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Deep Learning Approach for Gait Event Detection from a Single Shank-Worn IMU: Validation in Healthy and Neurological Cohorts.
    Romijnders R; Warmerdam E; Hansen C; Schmidt G; Maetzler W
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632266
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Normative database of spatiotemporal gait parameters using inertial sensors in typically developing children and young adults.
    Voss S; Joyce J; Biskis A; Parulekar M; Armijo N; Zampieri C; Tracy R; Palmer AS; Fefferman M; Ouyang B; Liu Y; Berry-Kravis E; O'Keefe JA
    Gait Posture; 2020 Jul; 80():206-213. PubMed ID: 32531757
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Concurrent validity and inter trial reliability of a single inertial measurement unit for spatial-temporal gait parameter analysis in patients with recent total hip or total knee arthroplasty.
    Bravi M; Gallotta E; Morrone M; Maselli M; Santacaterina F; Toglia R; Foti C; Sterzi S; Bressi F; Miccinilli S
    Gait Posture; 2020 Feb; 76():175-181. PubMed ID: 31862666
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Model-Based Step Length Estimation Using a Pendant-Integrated Mobility Sensor.
    Lueken M; Loeser J; Weber N; Bollheimer C; Leonhardt S; Ngo C
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2655-2665. PubMed ID: 34874862
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An Ambulatory Gait Monitoring System with Activity Classification and Gait Parameter Calculation Based on a Single Foot Inertial Sensor.
    Song M; Kim J
    IEEE Trans Biomed Eng; 2018 Apr; 65(4):885-893. PubMed ID: 28708542
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The placement of foot-mounted IMU sensors does affect the accuracy of spatial parameters during regular walking.
    Küderle A; Roth N; Zlatanovic J; Zrenner M; Eskofier B; Kluge F
    PLoS One; 2022; 17(6):e0269567. PubMed ID: 35679231
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Validity of shoe-type inertial measurement units for Parkinson's disease patients during treadmill walking.
    Lee M; Youm C; Jeon J; Cheon SM; Park H
    J Neuroeng Rehabil; 2018 May; 15(1):38. PubMed ID: 29764466
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Beyond gait speed: exploring the added value of Inertial Measurement Unit-based measurements of gait in the estimation of the walking ability in daily life.
    Felius RAW; Wouda NC; Geerars M; Bruijn SM; van Dieën JH; Punt M
    BMC Neurol; 2024 Apr; 24(1):129. PubMed ID: 38627674
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.