These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 34806195)
1. A multitask dual-stream attention network for the identification of KRAS mutation in colorectal cancer. Song K; Zhao Z; Ma Y; Wang J; Wu W; Qiang Y; Zhao J; Chaudhary S Med Phys; 2022 Jan; 49(1):254-270. PubMed ID: 34806195 [TBL] [Abstract][Full Text] [Related]
2. SG-Transunet: A segmentation-guided Transformer U-Net model for KRAS gene mutation status identification in colorectal cancer. Ma Y; Guo Y; Cui W; Liu J; Li Y; Wang Y; Qiang Y Comput Biol Med; 2024 May; 173():108293. PubMed ID: 38574528 [TBL] [Abstract][Full Text] [Related]
3. Spatial-Frequency dual-branch attention model for determining KRAS mutation status in colorectal cancer with T2-weighted MRI. Ma Y; Wang J; Song K; Qiang Y; Jiao X; Zhao J Comput Methods Programs Biomed; 2021 Sep; 209():106311. PubMed ID: 34352652 [TBL] [Abstract][Full Text] [Related]
4. Noninvasive KRAS mutation estimation in colorectal cancer using a deep learning method based on CT imaging. He K; Liu X; Li M; Li X; Yang H; Zhang H BMC Med Imaging; 2020 Jun; 20(1):59. PubMed ID: 32487083 [TBL] [Abstract][Full Text] [Related]
5. Next-Generation Radiogenomics Sequencing for Prediction of EGFR and KRAS Mutation Status in NSCLC Patients Using Multimodal Imaging and Machine Learning Algorithms. Shiri I; Maleki H; Hajianfar G; Abdollahi H; Ashrafinia S; Hatt M; Zaidi H; Oveisi M; Rahmim A Mol Imaging Biol; 2020 Aug; 22(4):1132-1148. PubMed ID: 32185618 [TBL] [Abstract][Full Text] [Related]
6. CT texture analysis for the prediction of KRAS mutation status in colorectal cancer via a machine learning approach. Taguchi N; Oda S; Yokota Y; Yamamura S; Imuta M; Tsuchigame T; Nagayama Y; Kidoh M; Nakaura T; Shiraishi S; Funama Y; Shinriki S; Miyamoto Y; Baba H; Yamashita Y Eur J Radiol; 2019 Sep; 118():38-43. PubMed ID: 31439256 [TBL] [Abstract][Full Text] [Related]
7. Integrating image and gene-data with a semi-supervised attention model for prediction of KRAS gene mutation status in non-small cell lung cancer. Xue Y; Zhang D; Jia L; Yang W; Zhao J; Qiang Y; Wang L; Qiao Y; Yue H PLoS One; 2024; 19(3):e0297331. PubMed ID: 38466735 [TBL] [Abstract][Full Text] [Related]
8. CT Texture Analysis: A Potential Biomarker for Evaluating KRAS Mutational Status in Colorectal Cancer. Cao J; Wang GR; Wang ZW; Jin ZY Chin Med Sci J; 2020 Dec; 35(4):306-314. PubMed ID: 33413746 [TBL] [Abstract][Full Text] [Related]
9. CHNet: A multi-task global-local Collaborative Hybrid Network for KRAS mutation status prediction in colorectal cancer. Cai M; Zhao L; Qiang Y; Wang L; Zhao J Artif Intell Med; 2024 Sep; 155():102931. PubMed ID: 39094228 [TBL] [Abstract][Full Text] [Related]
10. Analysis of KRAS Mutation Status Prediction Model for Colorectal Cancer Based on Medical Imaging. Ren Z; Che J; Wu XW; Xia J Comput Math Methods Med; 2021; 2021():3953442. PubMed ID: 34976107 [TBL] [Abstract][Full Text] [Related]
11. Deep morphology aided diagnosis network for segmentation of carotid artery vessel wall and diagnosis of carotid atherosclerosis on black-blood vessel wall MRI. Wu J; Xin J; Yang X; Sun J; Xu D; Zheng N; Yuan C Med Phys; 2019 Dec; 46(12):5544-5561. PubMed ID: 31356693 [TBL] [Abstract][Full Text] [Related]
12. Can CT-based radiomics signature predict KRAS/NRAS/BRAF mutations in colorectal cancer? Yang L; Dong D; Fang M; Zhu Y; Zang Y; Liu Z; Zhang H; Ying J; Zhao X; Tian J Eur Radiol; 2018 May; 28(5):2058-2067. PubMed ID: 29335867 [TBL] [Abstract][Full Text] [Related]
13. Relationships among Wan XB; Wang AQ; Cao J; Dong ZC; Li N; Yang S; Sun MM; Li Z; Luo SX World J Gastroenterol; 2019 Feb; 25(7):808-823. PubMed ID: 30809081 [TBL] [Abstract][Full Text] [Related]
14. Magnetic Resonance-Based Texture Analysis Differentiating KRAS Mutation Status in Rectal Cancer. Oh JE; Kim MJ; Lee J; Hur BY; Kim B; Kim DY; Baek JY; Chang HJ; Park SC; Oh JH; Cho SA; Sohn DK Cancer Res Treat; 2020 Jan; 52(1):51-59. PubMed ID: 31096736 [TBL] [Abstract][Full Text] [Related]
15. A Deep Learning Model Based on MRI and Clinical Factors Facilitates Noninvasive Evaluation of KRAS Mutation in Rectal Cancer. Liu H; Yin H; Li J; Dong X; Zheng H; Zhang T; Yin Q; Zhang Z; Lu M; Zhang H; Wang D J Magn Reson Imaging; 2022 Dec; 56(6):1659-1668. PubMed ID: 35587946 [TBL] [Abstract][Full Text] [Related]
16. Preoperative prediction of perineural invasion and KRAS mutation in colon cancer using machine learning. Li Y; Eresen A; Shangguan J; Yang J; Benson AB; Yaghmai V; Zhang Z J Cancer Res Clin Oncol; 2020 Dec; 146(12):3165-3174. PubMed ID: 32779023 [TBL] [Abstract][Full Text] [Related]
17. Development of a dual-energy spectral CT based nomogram for the preoperative discrimination of mutated and wild-type KRAS in patients with colorectal cancer. Cao Y; Zhang G; Bao H; Zhang S; Zhang J; Zhao Z; Zhang W; Li W; Yan X; Zhou J Clin Imaging; 2021 Jan; 69():205-212. PubMed ID: 32920468 [TBL] [Abstract][Full Text] [Related]
18. The value of Oner AO; Budak ES; Yıldırım S; Aydın F; Sezer C Hell J Nucl Med; 2017; 20(2):160-165. PubMed ID: 28697193 [TBL] [Abstract][Full Text] [Related]
19. KRAS mutation status between left- and right-sided colorectal cancer: are there any differences in computed tomography? Yu MM; Shi D; Li Q; Li JB; Li Q; Yu RS Jpn J Radiol; 2023 Jan; 41(1):83-91. PubMed ID: 35976561 [TBL] [Abstract][Full Text] [Related]
20. A medical image segmentation method for rectal tumors based on multi-scale feature retention and multiple attention mechanisms. Zhao J; Liu L; Yang X; Cui Y; Li D; Zhang H; Zhang K Med Phys; 2024 May; 51(5):3275-3291. PubMed ID: 38569054 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]