These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 34806352)

  • 1. Smartphone-Based Janus Micromotors Strategy for Motion-Based Detection of Glutathione.
    Yuan K; Cuntín-Abal C; Jurado-Sánchez B; Escarpa A
    Anal Chem; 2021 Dec; 93(49):16385-16392. PubMed ID: 34806352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-board smartphone micromotor-based fluorescence assays.
    Yuan K; de la Asunción-Nadal V; Cuntín-Abal C; Jurado-Sánchez B; Escarpa A
    Lab Chip; 2022 Mar; 22(5):928-935. PubMed ID: 34994753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D hierarchical LDHs-based Janus micro-actuator for detection and degradation of catechol.
    Xing N; Lyu Y; Li J; Ng DHL; Zhang X; Zhao W
    J Hazard Mater; 2023 Jan; 442():129914. PubMed ID: 36162304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-Driven Au-WO
    Zhang Q; Dong R; Wu Y; Gao W; He Z; Ren B
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4674-4683. PubMed ID: 28097861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic Reduced Graphene Oxide/Nickel/Platinum Nanoparticles Micromotors for Mycotoxin Analysis.
    Molinero-Fernández Á; Jodra A; Moreno-Guzmán M; López MÁ; Escarpa A
    Chemistry; 2018 May; 24(28):7172-7176. PubMed ID: 29469987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Janus-micromotor-based on-off luminescence sensor for active TNT detection.
    Yuan Y; Gao C; Wang D; Zhou C; Zhu B; He Q
    Beilstein J Nanotechnol; 2019; 10():1324-1331. PubMed ID: 31293869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Efficient Light-Driven TiO2-Au Janus Micromotors.
    Dong R; Zhang Q; Gao W; Pei A; Ren B
    ACS Nano; 2016 Jan; 10(1):839-44. PubMed ID: 26592971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Smartphone-Based Disposable Hemoglobin Sensor Based on Colorimetric Analysis.
    Meng Z; Tayyab M; Lin Z; Raji H; Javanmard M
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering Janus micromotors with WS
    Pacheco M; Asunción-Nadal V; Jurado-Sánchez B; Escarpa A
    Biosens Bioelectron; 2020 Oct; 165():112286. PubMed ID: 32729468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ZnO/ZnO
    Pourrahimi AM; Villa K; Ying Y; Sofer Z; Pumera M
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42688-42697. PubMed ID: 30500156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of a 3D printed smartphone microscopic system with enhanced imaging ability for biomedical applications.
    Rabha D; Sarmah A; Nath P
    J Microsc; 2019 Oct; 276(1):13-20. PubMed ID: 31498428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colorimetric fluorescent paper strip with smartphone platform for quantitative detection of cadmium ions in real samples.
    Wang H; Da L; Yang L; Chu S; Yang F; Yu S; Jiang C
    J Hazard Mater; 2020 Jun; 392():122506. PubMed ID: 32193122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spiropyran-Decorated SiO₂-Pt Janus Micromotor: Preparation and Light-Induced Dynamic Self-Assembly and Disassembly.
    Zhang Q; Dong R; Chang X; Ren B; Tong Z
    ACS Appl Mater Interfaces; 2015 Nov; 7(44):24585-91. PubMed ID: 26488455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Nanozyme- and Ambient Light-Based Smartphone Platform for Simultaneous Detection of Dual Biomarkers from Exposure to Organophosphorus Pesticides.
    Zhao Y; Yang M; Fu Q; Ouyang H; Wen W; Song Y; Zhu C; Lin Y; Du D
    Anal Chem; 2018 Jun; 90(12):7391-7398. PubMed ID: 29792679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dye-Enhanced Self-Electrophoretic Propulsion of Light-Driven TiO
    Wu Y; Dong R; Zhang Q; Ren B
    Nanomicro Lett; 2017; 9(3):30. PubMed ID: 30393725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic micromotors as self-stirring microreactors for efficient dual-mode colorimetric detection.
    Zhao H; Zeng H; Chen T; Huang X; Cai Y; Dong R
    J Colloid Interface Sci; 2023 Aug; 643():196-204. PubMed ID: 37058894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. "Click" Reaction-Mediated Silk Fibroin-Functionalized Thiol-Branched Graphene Oxide Quantum Dots for Smart Sensing of Tetracycline.
    Goswami KJ; Sen Sarma N
    ACS Omega; 2023 Jun; 8(24):21914-21928. PubMed ID: 37360495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A smartphone-based system for fluorescence polarization assays.
    Zhao Z; Wei L; Cao M; Lu M
    Biosens Bioelectron; 2019 Mar; 128():91-96. PubMed ID: 30640125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Smartphone-based colorimetric detection of glutathione.
    Vobornikova I; Pohanka M
    Neuro Endocrinol Lett; 2016 Dec; 37(Suppl1):139-143. PubMed ID: 28263542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosensing Strategy for Simultaneous and Accurate Quantitative Analysis of Mycotoxins in Food Samples Using Unmodified Graphene Micromotors.
    Molinero-Fernández Á; Moreno-Guzmán M; López MÁ; Escarpa A
    Anal Chem; 2017 Oct; 89(20):10850-10857. PubMed ID: 28889736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.