These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 34806496)

  • 1. Colorectal Cancer Detected by Machine Learning Models Using Conventional Laboratory Test Data.
    Li H; Lin J; Xiao Y; Zheng W; Zhao L; Yang X; Zhong M; Liu H
    Technol Cancer Res Treat; 2021; 20():15330338211058352. PubMed ID: 34806496
    [No Abstract]   [Full Text] [Related]  

  • 2. Blood Biomarkers Panels for Screening of Colorectal Cancer and Adenoma on a Machine Learning-Assisted Detection Platform.
    Wang H; Zhou Z; Li H; Xiang W; Lan Y; Dou X; Zhang X
    Cancer Control; 2023; 30():10732748231222109. PubMed ID: 38146088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altered Serum Annexin A2 Might Be a New Potential Diagnostic Biomarker in Human Colorectal Cancer.
    Hu D; Shen B; Yu M; Zha X; Zhou Y; Chen F; Ren J; Zhang L
    Ann Clin Lab Sci; 2020 Nov; 50(6):726-733. PubMed ID: 33334786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classification and Diagnostic Prediction of Colorectal Cancer Mortality Based on Machine Learning Algorithms: A Multicenter National Study.
    Mohammadi G; Azizmohammad Looha M; Pourhoseingholi MA; Rezaei Tavirani M; Sohrabi S; Zareie Shab Khaneh A; Piri H; Alaei M; Parvani N; Vakilzadeh I; Javadi S; Moradian Haft Cheshmeh Z; Razzaghi Z; Robati RM; Zamanian Azodi M; Zarean Shahraki S; Hadavi M; Talebi R; Yazdani JC; Motlagh ME; Khodakarim S
    Asian Pac J Cancer Prev; 2024 Jan; 25(1):333-342. PubMed ID: 38285801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utility of machine learning in developing a predictive model for early-age-onset colorectal neoplasia using electronic health records.
    Hussan H; Zhao J; Badu-Tawiah AK; Stanich P; Tabung F; Gray D; Ma Q; Kalady M; Clinton SK
    PLoS One; 2022; 17(3):e0265209. PubMed ID: 35271664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A reliable method for colorectal cancer prediction based on feature selection and support vector machine.
    Zhao D; Liu H; Zheng Y; He Y; Lu D; Lyu C
    Med Biol Eng Comput; 2019 Apr; 57(4):901-912. PubMed ID: 30478811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of machine learning algorithms for the identification of acute exacerbations in chronic obstructive pulmonary disease.
    Wang C; Chen X; Du L; Zhan Q; Yang T; Fang Z
    Comput Methods Programs Biomed; 2020 May; 188():105267. PubMed ID: 31841787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Circulating fibrinogen to pre-albumin ratio is a promising biomarker for diagnosis of colorectal cancer.
    Sun F; Tan YA; Gao QF; Li SQ; Zhang J; Chen QG; Jiang YH; Zhang L; Ying HQ; Wang XZ
    J Clin Lab Anal; 2019 Jan; 33(1):e22635. PubMed ID: 30047185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diagnostic Value of Carcinoembryonic Antigen in Ascites for Colorectal Cancer with Peritoneal Carcinomatosis.
    Song SE; Choi P; Kim JH; Jung K; Kim SE; Moon W; Park MI; Park SJ
    Korean J Gastroenterol; 2018 Jun; 71(6):332-337. PubMed ID: 29943560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploration of the application potential of serum multi-biomarker model in colorectal cancer screening.
    Xu R; Shen J; Song Y; Lu J; Liu Y; Cao Y; Wang Z; Zhang J
    Sci Rep; 2024 May; 14(1):10127. PubMed ID: 38698075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chronic stress in practice assistants: An analytic approach comparing four machine learning classifiers with a standard logistic regression model.
    Bozorgmehr A; Thielmann A; Weltermann B
    PLoS One; 2021; 16(5):e0250842. PubMed ID: 33945572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved diagnosis of colorectal cancer using combined biomarkers including Fusobacterium nucleatum, fecal occult blood, transferrin, CEA, CA19-9, gender, and age.
    Zhao R; Xia D; Chen Y; Kai Z; Ruan F; Xia C; Gong J; Wu J; Wang X
    Cancer Med; 2023 Jul; 12(13):14636-14645. PubMed ID: 37162269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and validation of a predictive model for detection of colorectal cancer in primary care by analysis of complete blood counts: a binational retrospective study.
    Kinar Y; Kalkstein N; Akiva P; Levin B; Half EE; Goldshtein I; Chodick G; Shalev V
    J Am Med Inform Assoc; 2016 Sep; 23(5):879-90. PubMed ID: 26911814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using gut microbiota as a diagnostic tool for colorectal cancer: machine learning techniques reveal promising results.
    Lu F; Lei T; Zhou J; Liang H; Cui P; Zuo T; Ye L; Chen H; Huang J
    J Med Microbiol; 2023 Jun; 72(6):. PubMed ID: 37288545
    [No Abstract]   [Full Text] [Related]  

  • 15. Models of logistic regression analysis, support vector machine, and back-propagation neural network based on serum tumor markers in colorectal cancer diagnosis.
    Zhang B; Liang XL; Gao HY; Ye LS; Wang YG
    Genet Mol Res; 2016 May; 15(2):. PubMed ID: 27323037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting Colorectal Cancer Recurrence and Patient Survival Using Supervised Machine Learning Approach: A South African Population-Based Study.
    Achilonu OJ; Fabian J; Bebington B; Singh E; Eijkemans MJC; Musenge E
    Front Public Health; 2021; 9():694306. PubMed ID: 34307286
    [No Abstract]   [Full Text] [Related]  

  • 17. Machine learning-based prediction models for home discharge in patients with COVID-19: Development and evaluation using electronic health records.
    Zapata RD; Huang S; Morris E; Wang C; Harle C; Magoc T; Mardini M; Loftus T; Modave F
    PLoS One; 2023; 18(10):e0292888. PubMed ID: 37862334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preoperative prediction of regional lymph node metastasis of colorectal cancer based on
    He J; Wang Q; Zhang Y; Wu H; Zhou Y; Zhao S
    Ann Nucl Med; 2021 May; 35(5):617-627. PubMed ID: 33738763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and validation of machine learning models for postoperative venous thromboembolism prediction in colorectal cancer inpatients: a retrospective study.
    Qin L; Liang Z; Xie J; Ye G; Guan P; Huang Y; Li X
    J Gastrointest Oncol; 2023 Feb; 14(1):220-232. PubMed ID: 36915444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predictive value of monocyte to high-density lipoprotein cholesterol ratio and tumor markers in colorectal cancer and their relationship with clinicopathological characteristics.
    Zhang X; Qin H; Tan X; Mo Y; Li Z; Huang G; Wei Z
    World J Surg Oncol; 2023 Jul; 21(1):200. PubMed ID: 37420210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.