BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 34806548)

  • 1. How proton transfer affects the helical parameters in DNA:DNA microhelices.
    Palafox MA; Pedraza Velasco ML; Marín JI; Posada-Moreno P
    J Biomol Struct Dyn; 2022; 40(24):13759-13777. PubMed ID: 34806548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Base pairs with 5-chloroorotic acid and comparison with the natural nucleobase. Structural and spectroscopic study, and three suggested antiviral modified nucleosides.
    Palafox MA; Kattan D; de Pedraza Velasco ML; Isasi J; Rani K; Singh SP; Vats JK; Rastogi VK
    J Biomol Struct Dyn; 2024 Jul; 42(10):4956-4984. PubMed ID: 37403335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Why the tautomerization of the G·C Watson-Crick base pair via the DPT does not cause point mutations during DNA replication? QM and QTAIM comprehensive analysis.
    Brovarets' OO; Hovorun DM
    J Biomol Struct Dyn; 2014; 32(9):1474-99. PubMed ID: 23909623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of bromine atom on the different tautomeric forms of microhydrated 5-bromouracil, in the DNA:RNA microhelix and in the interaction with human proteins.
    Palafox MA; Chalanchi SM; Isasi J; Premkumar R; Franklin Benial AM; Rastogi VK
    J Biomol Struct Dyn; 2020 Nov; 38(18):5443-5463. PubMed ID: 31838954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can tautomerization of the A·T Watson-Crick base pair via double proton transfer provoke point mutations during DNA replication? A comprehensive QM and QTAIM analysis.
    Brovarets OO; Hovorun DM
    J Biomol Struct Dyn; 2014; 32(1):127-54. PubMed ID: 23383960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Base pairs with 4-amino-3-nitrobenzonitrile: comparison with the natural WC pairs. Dimer and tetramer forms, Infrared and Raman spectra, and several proposed antiviral modified nucleosides.
    Palafox MA; Kattan D; de Pedraza Velasco ML; Isasi J; Posada-Moreno P; Rani K; Singh SP; Rastogi VK
    J Biomol Struct Dyn; 2023 Jul; 41(10):4444-4466. PubMed ID: 35583120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomistic understanding of the C·T mismatched DNA base pair tautomerization via the DPT: QM and QTAIM computational approaches.
    Brovarets' OO; Hovorun DM
    J Comput Chem; 2013 Nov; 34(30):2577-90. PubMed ID: 23955922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A QM/QTAIM detailed look at the Watson-Crick↔wobble tautomeric transformations of the 2-aminopurine·pyrimidine mispairs.
    Brovarets' OO; Voiteshenko IS; Pérez-Sánchez H; Hovorun DM
    J Biomol Struct Dyn; 2018 May; 36(7):1649-1665. PubMed ID: 28514900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Double proton transfer in the isolated and DNA-embedded guanine-cytosine base pair.
    Zoete V; Meuwly M
    J Chem Phys; 2004 Sep; 121(9):4377-88. PubMed ID: 15332989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The physicochemical essence of the purine·pyrimidine transition mismatches with Watson-Crick geometry in DNA: A·C* versa A*·C. A QM and QTAIM atomistic understanding.
    Brovarets' OO; Hovorun DM
    J Biomol Struct Dyn; 2015; 33(1):28-55. PubMed ID: 24261751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proton exchange and base pair opening in a DNA triple helix.
    Powell SW; Jiang L; Russu IM
    Biochemistry; 2001 Sep; 40(37):11065-72. PubMed ID: 11551203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proton tunneling in the A∙T Watson-Crick DNA base pair: myth or reality?
    Brovarets' OO; Hovorun DM
    J Biomol Struct Dyn; 2015; 33(12):2716-20. PubMed ID: 26362836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wobble↔Watson-Crick tautomeric transitions in the homo-purine DNA mismatches: a key to the intimate mechanisms of the spontaneous transversions.
    Brovarets' OO; Hovorun DM
    J Biomol Struct Dyn; 2015; 33(12):2710-5. PubMed ID: 26237090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing the importance of proton transfer reactions in DNA.
    Jacquemin D; Zúñiga J; Requena A; Céron-Carrasco JP
    Acc Chem Res; 2014 Aug; 47(8):2467-74. PubMed ID: 24849375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solvent effect on the intermolecular proton transfer of the Watson and Crick guanine-cytosine and adenine-thymine base pairs: a polarizable continuum model study.
    Romero EE; Hernandez FE
    Phys Chem Chem Phys; 2018 Jan; 20(2):1198-1209. PubMed ID: 29242886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum and classical effects in DNA point mutations: Watson-Crick tautomerism in AT and GC base pairs.
    Slocombe L; Al-Khalili JS; Sacchi M
    Phys Chem Chem Phys; 2021 Feb; 23(7):4141-4150. PubMed ID: 33533770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of redox potentials for the Watson-Crick base pairs, DNA nucleosides, and relevant nucleoside analogues.
    Crespo-Hernandez CE; Close DM; Gorb L; Leszczynski J
    J Phys Chem B; 2007 May; 111(19):5386-95. PubMed ID: 17447808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The nature of the transition mismatches with Watson-Crick architecture: the G*·T or G·T* DNA base mispair or both? A QM/QTAIM perspective for the biological problem.
    Brovarets' OO; Hovorun DM
    J Biomol Struct Dyn; 2015; 33(5):925-45. PubMed ID: 24842163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Kinetic Approach to Double Proton Transfer in Watson-Crick DNA Base Pairs.
    Umesaki K; Odai K
    J Phys Chem B; 2020 Mar; 124(9):1715-1722. PubMed ID: 32045241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. π-Cooperativity effect on the base stacking interactions in DNA: is there a novel stabilization factor coupled with base pairing H-bonds?
    Karabıyık H; Sevinçek R; Karabıyık H
    Phys Chem Chem Phys; 2014 Aug; 16(29):15527-38. PubMed ID: 24953339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.