These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 34806728)
1. The implication of adsorption preferences of ions and surfactants on the shape control of gold nanoparticles: a microscopic, atomistic perspective. Meena SK; Meena C Nanoscale; 2021 Dec; 13(46):19549-19560. PubMed ID: 34806728 [TBL] [Abstract][Full Text] [Related]
2. Understanding the microscopic origin of gold nanoparticle anisotropic growth from molecular dynamics simulations. Meena SK; Sulpizi M Langmuir; 2013 Dec; 29(48):14954-61. PubMed ID: 24224887 [TBL] [Abstract][Full Text] [Related]
3. The role of halide ions in the anisotropic growth of gold nanoparticles: a microscopic, atomistic perspective. Meena SK; Celiksoy S; Schäfer P; Henkel A; Sönnichsen C; Sulpizi M Phys Chem Chem Phys; 2016 May; 18(19):13246-54. PubMed ID: 27118188 [TBL] [Abstract][Full Text] [Related]
4. Influence of cationic surfactants on the formation and surface oxidation states of gold nanoparticles produced via laser ablation. Fong YY; Gascooke JR; Visser BR; Harris HH; Cowie BC; Thomsen L; Metha GF; Buntine MA Langmuir; 2013 Oct; 29(40):12452-62. PubMed ID: 24015926 [TBL] [Abstract][Full Text] [Related]
5. Trap-and-Track for Characterizing Surfactants at Interfaces. Kim J; Martin OJF Molecules; 2023 Mar; 28(6):. PubMed ID: 36985832 [TBL] [Abstract][Full Text] [Related]
6. Multiscale simulations of ligand adsorption and exchange on gold nanoparticles. Gao HM; Liu H; Qian HJ; Jiao GS; Lu ZY Phys Chem Chem Phys; 2018 Jan; 20(3):1381-1394. PubMed ID: 29271449 [TBL] [Abstract][Full Text] [Related]
7. Understanding Anisotropic Growth of Au Penta-Twinned Nanorods by Liquid Cell Transmission Electron Microscopy. Jin B; Sushko ML; Liu Z; Cao X; Jin C; Tang R J Phys Chem Lett; 2019 Apr; 10(7):1443-1449. PubMed ID: 30856333 [TBL] [Abstract][Full Text] [Related]
8. Growth Mechanism of Gold Nanorods: the Effect of Tip-Surface Curvature As Revealed by Molecular Dynamics Simulations. da Silva JA; Netz PA; Meneghetti MR Langmuir; 2020 Jan; 36(1):257-263. PubMed ID: 31841340 [TBL] [Abstract][Full Text] [Related]
9. The role of bromide ions in seeding growth of Au nanorods. Garg N; Scholl C; Mohanty A; Jin R Langmuir; 2010 Jun; 26(12):10271-6. PubMed ID: 20394386 [TBL] [Abstract][Full Text] [Related]
10. From Gold Nanoseeds to Nanorods: The Microscopic Origin of the Anisotropic Growth. Meena SK; Sulpizi M Angew Chem Int Ed Engl; 2016 Sep; 55(39):11960-4. PubMed ID: 27560039 [TBL] [Abstract][Full Text] [Related]
11. Silver-Assisted Synthesis of Gold Nanorods: the Relation between Silver Additive and Iodide Impurities. Jessl S; Tebbe M; Guerrini L; Fery A; Alvarez-Puebla RA; Pazos-Perez N Small; 2018 May; 14(20):e1703879. PubMed ID: 29665260 [TBL] [Abstract][Full Text] [Related]
12. Defining rules for the shape evolution of gold nanoparticles. Langille MR; Personick ML; Zhang J; Mirkin CA J Am Chem Soc; 2012 Sep; 134(35):14542-54. PubMed ID: 22920241 [TBL] [Abstract][Full Text] [Related]
13. Molecular Dynamics Simulation of Polarizable Gold Nanoparticles Interacting with Sodium Citrate. Perfilieva OA; Pyshnyi DV; Lomzov AA J Chem Theory Comput; 2019 Feb; 15(2):1278-1292. PubMed ID: 30576603 [TBL] [Abstract][Full Text] [Related]
14. On the origin of controlled anisotropic growth of monodisperse gold nanobipyramids. Meena SK; Lerouge F; Baldeck P; Andraud C; Garavelli M; Parola S; Sulpizi M; Rivalta I Nanoscale; 2021 Sep; 13(36):15292-15300. PubMed ID: 34486622 [TBL] [Abstract][Full Text] [Related]
15. Au(III)-CTAB reduction by ascorbic acid: preparation and characterization of gold nanoparticles. Khan Z; Singh T; Hussain JI; Hashmi AA Colloids Surf B Biointerfaces; 2013 Apr; 104():11-7. PubMed ID: 23298582 [TBL] [Abstract][Full Text] [Related]
16. Cetyltrimethylammonium bromide silver bromide complex as the capping agent of gold nanorods. Hubert F; Testard F; Spalla O Langmuir; 2008 Sep; 24(17):9219-22. PubMed ID: 18690754 [TBL] [Abstract][Full Text] [Related]
17. Cetyltrimethylammonium bromide-modified spherical and cube-like gold nanoparticles as extrinsic Raman labels in surface-enhanced Raman spectroscopy based heterogeneous immunoassays. Narayanan R; Lipert RJ; Porter MD Anal Chem; 2008 Mar; 80(6):2265-71. PubMed ID: 18290676 [TBL] [Abstract][Full Text] [Related]
18. New Aspects of the Gold Nanorod Formation Mechanism via Seed-Mediated Methods Revealed by Molecular Dynamics Simulations. da Silva JA; Meneghetti MR Langmuir; 2018 Jan; 34(1):366-375. PubMed ID: 29243933 [TBL] [Abstract][Full Text] [Related]
19. Formation of high-density crystalline-shape gold nanoparticles on indium tin oxide surfaces: effects of alcohothermal seeding. Umar AA; Salleh MM; Majlis BY; Oyama M J Nanosci Nanotechnol; 2011 Jun; 11(6):4974-80. PubMed ID: 21770130 [TBL] [Abstract][Full Text] [Related]
20. Self-assembly and adsorption of cetyltrimethylammonium bromide and didodecyldimethylammonium bromide surfactants at the mica-water interface. Tsagkaropoulou G; Allen FJ; Clarke SM; Camp PJ Soft Matter; 2019 Oct; 15(41):8402-8411. PubMed ID: 31608355 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]