BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 34806737)

  • 1. Intense chiral signal from α-helical poly-L-alanine observed in low-frequency Raman optical activity.
    Yamamoto S; Ishiro S; Kessler J; Bouř P
    Phys Chem Chem Phys; 2021 Dec; 23(46):26501-26509. PubMed ID: 34806737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Raman optical activity of tetra-alanine in the poly(l-proline) II type peptide conformation.
    Furuta M; Fujisawa T; Urago H; Eguchi T; Shingae T; Takahashi S; Blanch EW; Unno M
    Phys Chem Chem Phys; 2017 Jan; 19(3):2078-2086. PubMed ID: 28045149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solvated states of poly-L-alanine α-helix explored by Raman optical activity.
    Yamamoto S; Furukawa T; Bouř P; Ozaki Y
    J Phys Chem A; 2014 May; 118(20):3655-62. PubMed ID: 24758541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vibrational Raman optical activity characterization of poly(l-proline) II helix in alanine oligopeptides.
    McColl IH; Blanch EW; Hecht L; Kallenbach NR; Barron LD
    J Am Chem Soc; 2004 Apr; 126(16):5076-7. PubMed ID: 15099084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the solvation of the α-helix with extended amide III bands in Raman optical activity.
    Yamamoto S; Kimura F
    Phys Chem Chem Phys; 2022 Feb; 24(5):3191-3199. PubMed ID: 35043805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Raman optical activity of a cyclic dipeptide analyzed by quantum chemical calculations combined with molecular dynamics simulations.
    Urago H; Suga T; Hirata T; Kodama H; Unno M
    J Phys Chem B; 2014 Jun; 118(24):6767-74. PubMed ID: 24873951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A study of alpha-helix hydration in polypeptides, proteins, and viruses using vibrational raman optical activity.
    McColl IH; Blanch EW; Hecht L; Barron LD
    J Am Chem Soc; 2004 Jul; 126(26):8181-8. PubMed ID: 15225059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Demonstration of the ring conformation in polyproline by the Raman optical activity.
    Kapitán J; Baumruk V; Bour P
    J Am Chem Soc; 2006 Feb; 128(7):2438-43. PubMed ID: 16478200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-resolved optical Kerr-effect spectroscopy of low-frequency dynamics in Di-L-alanine, poly-L-alanine, and lysozyme in solution.
    Giraud G; Wynne K
    J Am Chem Soc; 2002 Oct; 124(41):12110-1. PubMed ID: 12371847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical study of the Raman optical activity spectra of 3(10)-helical polypeptides.
    Jacob CR
    Chemphyschem; 2011 Dec; 12(17):3291-306. PubMed ID: 22052852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and vibrational motion of insulin from Raman optical activity spectra.
    Yamamoto S; Kaminský J; Bouř P
    Anal Chem; 2012 Mar; 84(5):2440-51. PubMed ID: 22263577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Residual structure in disordered peptides and unfolded proteins from multivariate analysis and ab initio simulation of Raman optical activity data.
    Zhu F; Kapitan J; Tranter GE; Pudney PD; Isaacs NW; Hecht L; Barron LD
    Proteins; 2008 Feb; 70(3):823-33. PubMed ID: 17729278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is polyproline II helix the killer conformation? A Raman optical activity study of the amyloidogenic prefibrillar intermediate of human lysozyme.
    Blanch EW; Morozova-Roche LA; Cochran DA; Doig AJ; Hecht L; Barron LD
    J Mol Biol; 2000 Aug; 301(2):553-63. PubMed ID: 10926527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amide I Raman optical activity of polypeptides: fragment approximation.
    Choi JH; Cho M
    J Chem Phys; 2009 Jan; 130(1):014503. PubMed ID: 19140618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Raman optical activity of filamentous bacteriophages: hydration of alpha-helices.
    Blanch EW; Bell AF; Hecht L; Day LA; Barron LD
    J Mol Biol; 1999 Jul; 290(1):1-7. PubMed ID: 10388553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Raman optical activity characterization of native and molten globule states of equine lysozyme: comparison with hen lysozyme and bovine alpha-lactalbumin.
    Blanch EW; Morozova-Roche LA; Hecht L; Noppe W; Barron LD
    Biopolymers; 2000; 57(4):235-48. PubMed ID: 10861388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding CH-Stretching Raman Optical Activity in Ala-Ala Dipeptides.
    Hope M; Šebestík J; Kapitán J; Bouř P
    J Phys Chem A; 2020 Jan; 124(4):674-683. PubMed ID: 31904987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Residual structure in unfolded proteins revealed by Raman optical activity.
    Wilson G; Hecht L; Barron LD
    Biochemistry; 1996 Sep; 35(38):12518-25. PubMed ID: 8823188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can Raman optical activity separate axial from local chirality? A theoretical study of helical deca-alanine.
    Herrmann C; Ruud K; Reiher M
    Chemphyschem; 2006 Oct; 7(10):2189-96. PubMed ID: 16941557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. α-Synuclein conformations followed by vibrational optical activity. Simulation and understanding of the spectra.
    Kurochka A; Průša J; Kessler J; Kapitán J; Bouř P
    Phys Chem Chem Phys; 2021 Aug; 23(31):16635-16645. PubMed ID: 34323256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.