These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 34806809)
1. In Situ Raman Probing of Hot-Electron Transfer at Gold-Graphene Interfaces with Atomic Layer Accuracy. Yang JL; Wang HJ; Zhu Z; Yue MF; Yang WM; Zhang XG; Ruan X; Guan Z; Yang ZL; Cai W; Wu YF; Fan FR; Dong JC; Zhang H; Xu H; Tian ZQ; Li JF Angew Chem Int Ed Engl; 2022 Jan; 61(5):e202112749. PubMed ID: 34806809 [TBL] [Abstract][Full Text] [Related]
2. New Insights of Charge Transfer at Metal/Semiconductor Interfaces for Hot-Electron Generation Studied by Surface-Enhanced Raman Spectroscopy. Guan J; Wu S; Li L; Wang X; Ji W; Ozaki Y J Phys Chem Lett; 2022 Apr; 13(16):3571-3578. PubMed ID: 35426671 [TBL] [Abstract][Full Text] [Related]
3. Differentiating Plasmon-Enhanced Chemical Reactions on AgPd Hollow Nanoplates through Surface-Enhanced Raman Spectroscopy. Jiao S; Dai K; Besteiro LV; Gao H; Chen X; Wang W; Zhang Y; Liu C; Pérez-Juste I; Pérez-Juste J; Pastoriza-Santos I; Zheng G ACS Catal; 2024 May; 14(9):6799-6806. PubMed ID: 38721378 [TBL] [Abstract][Full Text] [Related]
4. Plasmonic Hot Electron-Mediated Hydrodehalogenation Kinetics on Nanostructured Ag Electrodes. Liu J; Cai ZY; Sun WX; Wang JZ; Shen XR; Zhan C; Devasenathipathy R; Zhou JZ; Wu DY; Mao BW; Tian ZQ J Am Chem Soc; 2020 Oct; 142(41):17489-17498. PubMed ID: 32941020 [TBL] [Abstract][Full Text] [Related]
5. Hot-electron-mediated surface chemistry: toward electronic control of catalytic activity. Park JY; Kim SM; Lee H; Nedrygailov II Acc Chem Res; 2015 Aug; 48(8):2475-83. PubMed ID: 26181684 [TBL] [Abstract][Full Text] [Related]
6. Ultrafast Surface-Enhanced Raman Probing of the Role of Hot Electrons in Plasmon-Driven Chemistry. Brandt NC; Keller EL; Frontiera RR J Phys Chem Lett; 2016 Aug; 7(16):3179-85. PubMed ID: 27488515 [TBL] [Abstract][Full Text] [Related]
8. MoS Lu W; Liu L; Zhu T; Li Z; Shao M; Zhang C; Yu J; Zhao X; Yang C; Li Z Opt Express; 2021 Nov; 29(23):38053-38067. PubMed ID: 34808865 [TBL] [Abstract][Full Text] [Related]
9. Surface-Enhanced Raman Spectroscopy Substrates: Plasmonic Metals to Graphene. Mhlanga N; Ntho TA; Chauke H; Sikhwivhilu L Front Chem; 2022; 10():832282. PubMed ID: 35355787 [TBL] [Abstract][Full Text] [Related]
10. In Situ Observation of Hot Carrier Transfer at Plasmonic Au/Metal-Organic Frameworks (MOFs) Interfaces. Wang S; Wu L; Li J; Deng C; Xue J; Tang D; Ji H; Chen C; Zhang Y; Zhao J Chemistry; 2022 Sep; 28(50):e202200919. PubMed ID: 35674346 [TBL] [Abstract][Full Text] [Related]
11. In situ SERS study of surface plasmon resonance enhanced photocatalytic reactions using bifunctional Au@CdS core-shell nanocomposites. Yang JL; Xu J; Ren H; Sun L; Xu QC; Zhang H; Li JF; Tian ZQ Nanoscale; 2017 May; 9(19):6254-6258. PubMed ID: 28463374 [TBL] [Abstract][Full Text] [Related]
12. Toward highly sensitive surface-enhanced Raman scattering: the design of a 3D hybrid system with monolayer graphene sandwiched between silver nanohole arrays and gold nanoparticles. Zhao Y; Yang D; Li X; Liu Y; Hu X; Zhou D; Lu Y Nanoscale; 2017 Jan; 9(3):1087-1096. PubMed ID: 27973628 [TBL] [Abstract][Full Text] [Related]
13. Using the plasmon linewidth to calculate the time and efficiency of electron transfer between gold nanorods and graphene. Hoggard A; Wang LY; Ma L; Fang Y; You G; Olson J; Liu Z; Chang WS; Ajayan PM; Link S ACS Nano; 2013 Dec; 7(12):11209-17. PubMed ID: 24266755 [TBL] [Abstract][Full Text] [Related]
14. Ultrafast Dynamics of Plasmon-Exciton Interaction of Ag Nanowire- Graphene Hybrids for Surface Catalytic Reactions. Ding Q; Shi Y; Chen M; Li H; Yang X; Qu Y; Liang W; Sun M Sci Rep; 2016 Sep; 6():32724. PubMed ID: 27601199 [TBL] [Abstract][Full Text] [Related]
15. Nanoscale Surface Redox Chemistry Triggered by Plasmon-Generated Hot Carriers. Yin H; Lan JG; Goubert G; Wang YH; Li JF; Zenobi R Small; 2019 Nov; 15(47):e1903674. PubMed ID: 31588678 [TBL] [Abstract][Full Text] [Related]
16. Quantifying Hot Electron Energy Contributions in Plasmonic Photocatalysis Using Electrochemical Surface-Enhanced Raman Spectroscopy. Yu L; Du A; Yang L; Hu Y; Xie W J Phys Chem Lett; 2022 Jun; 13(24):5495-5500. PubMed ID: 35695751 [TBL] [Abstract][Full Text] [Related]
17. Ultrafast and Efficient Transport of Hot Plasmonic Electrons by Graphene for Pt Free, Highly Efficient Visible-Light Responsive Photocatalyst. Kumar D; Lee A; Lee T; Lim M; Lim DK Nano Lett; 2016 Mar; 16(3):1760-7. PubMed ID: 26854830 [TBL] [Abstract][Full Text] [Related]
19. Direct and Broadband Plasmonic Charge Transfer to Enhance Water Oxidation on a Gold Electrode. Graf M; Vonbun-Feldbauer GB; Koper MTM ACS Nano; 2021 Feb; 15(2):3188-3200. PubMed ID: 33496564 [TBL] [Abstract][Full Text] [Related]
20. On the Effect of Native SiO Wang J; de Freitas IC; Alves TV; Ando RA; Fang Z; Camargo PHC Chemistry; 2017 May; 23(30):7185-7190. PubMed ID: 28398612 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]