BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 34806952)

  • 41. Nglyc: A Random Forest Method for Prediction of N-Glycosylation Sites in Eukaryotic Protein Sequence.
    Pugalenthi G; Nithya V; Chou KC; Archunan G
    Protein Pept Lett; 2020; 27(3):178-186. PubMed ID: 31577193
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sequence-Based Prediction with Feature Representation Learning and Biological Function Analysis of Channel Proteins.
    Chen Z; Jiao S; Zhao D; Hesham AE; Zou Q; Xu L; Sun M; Zhang L
    Front Biosci (Landmark Ed); 2022 Jun; 27(6):177. PubMed ID: 35748253
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Using Chou's 5-steps rule to identify N
    Zhang Z; Wang L
    J Biomol Struct Dyn; 2022 Feb; 40(2):796-806. PubMed ID: 32948102
    [No Abstract]   [Full Text] [Related]  

  • 44. predCar-site: Carbonylation sites prediction in proteins using support vector machine with resolving data imbalanced issue.
    Hasan MA; Li J; Ahmad S; Molla MK
    Anal Biochem; 2017 May; 525():107-113. PubMed ID: 28286168
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Glypre: In Silico Prediction of Protein Glycation Sites by Fusing Multiple Features and Support Vector Machine.
    Zhao X; Zhao X; Bao L; Zhang Y; Dai J; Yin M
    Molecules; 2017 Nov; 22(11):. PubMed ID: 29099805
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Prediction of lysine formylation sites using support vector machine based on the sample selection from majority classes and synthetic minority over-sampling techniques.
    Sohrawordi M; Hossain MA
    Biochimie; 2022 Jan; 192():125-135. PubMed ID: 34627982
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Meta-i6mA: an interspecies predictor for identifying DNA N6-methyladenine sites of plant genomes by exploiting informative features in an integrative machine-learning framework.
    Hasan MM; Basith S; Khatun MS; Lee G; Manavalan B; Kurata H
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32910169
    [TBL] [Abstract][Full Text] [Related]  

  • 48. PLP_FS: prediction of lysine phosphoglycerylation sites in protein using support vector machine and fusion of multiple F_Score feature selection.
    Sohrawordi M; Hossain MA; Hasan MAM
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35929355
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Computational methods for ubiquitination site prediction using physicochemical properties of protein sequences.
    Cai B; Jiang X
    BMC Bioinformatics; 2016 Mar; 17():116. PubMed ID: 26940649
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Machine learning approach to gene essentiality prediction: a review.
    Aromolaran O; Aromolaran D; Isewon I; Oyelade J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33842944
    [TBL] [Abstract][Full Text] [Related]  

  • 51. DPP-PseAAC: A DNA-binding protein prediction model using Chou's general PseAAC.
    Rahman MS; Shatabda S; Saha S; Kaykobad M; Rahman MS
    J Theor Biol; 2018 Sep; 452():22-34. PubMed ID: 29753757
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Transductive learning as an alternative to translation initiation site identification.
    Nunes Pinto CL; Nobre CN; Zárate LE
    BMC Bioinformatics; 2017 Feb; 18(1):81. PubMed ID: 28152994
    [TBL] [Abstract][Full Text] [Related]  

  • 53. m7GPredictor: An improved machine learning-based model for predicting internal m7G modifications using sequence properties.
    Liu X; Liu Z; Mao X; Li Q
    Anal Biochem; 2020 Nov; 609():113905. PubMed ID: 32805275
    [TBL] [Abstract][Full Text] [Related]  

  • 54. iLM-2L: A two-level predictor for identifying protein lysine methylation sites and their methylation degrees by incorporating K-gap amino acid pairs into Chou׳s general PseAAC.
    Ju Z; Cao JZ; Gu H
    J Theor Biol; 2015 Nov; 385():50-7. PubMed ID: 26254214
    [TBL] [Abstract][Full Text] [Related]  

  • 55. RF-SVM: Identification of DNA-binding proteins based on comprehensive feature representation methods and support vector machine.
    Zhang Y; Ni J; Gao Y
    Proteins; 2022 Feb; 90(2):395-404. PubMed ID: 34455627
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Predicting pupylation sites in prokaryotic proteins using semi-supervised self-training support vector machine algorithm.
    Ju Z; Gu H
    Anal Biochem; 2016 Aug; 507():1-6. PubMed ID: 27197054
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Prediction of lysine propionylation sites using biased SVM and incorporating four different sequence features into Chou's PseAAC.
    Ju Z; He JJ
    J Mol Graph Model; 2017 Sep; 76():356-363. PubMed ID: 28763688
    [TBL] [Abstract][Full Text] [Related]  

  • 58. mACPpred: A Support Vector Machine-Based Meta-Predictor for Identification of Anticancer Peptides.
    Boopathi V; Subramaniyam S; Malik A; Lee G; Manavalan B; Yang DC
    Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31013619
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Investigating the Precise Identification of Citrullination Sites with High- Performance Score Metrics Using a Powerful Computation Predicting Tool.
    Ahmed FF; Podder A; Bulbul MF; Hossain MA; Hasan M; Sarkar MAR; Kim D
    Comb Chem High Throughput Screen; 2024; 27(9):1381-1393. PubMed ID: 37702240
    [TBL] [Abstract][Full Text] [Related]  

  • 60. PseU-ST: A new stacked ensemble-learning method for identifying RNA pseudouridine sites.
    Zhang X; Wang S; Xie L; Zhu Y
    Front Genet; 2023; 14():1121694. PubMed ID: 36741328
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.